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Abstract. In this paper we explore the problem we call “malicious impostor
emails.” Compared with the fairly well-known abuses such as spam and email
worms, malicious impostor emails could be much more catastrophic because their
payloads may directly target at the victim users’ cryptographic keys (via whatever
means) and their content—except the malicious payload as an attachment—could
look perfectly like a legitimate one. As a first step in dealing with malicious impos-
tor emails, we present a partial solution that mitigates their damage without forcing
the involvement of the users.
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1. Introduction

Emails have become an indispensable part of most people’s daily routines. However,
emails were not originally designed as a utility in an adversarial environment, which may
explain why there have been so many incidents related to the abuse of emails. Two fairly
well-known abuses are spam/phishing emails and email worms. Spam emails are often
commercially-motivated messages that are sent to innocent users. Although they have
wasted a significant amount of human and machine resources, in general spam emails
are benign in the sense that they do not carry harmful payloads. The so-called “phishing”
emails could do more harm with the participation of an innocent user who may be fooled
into trusting, for instance, a bogus web link and entering his username/password which is
thus gleaned by the adversary. Recent email worms could do more damage automatically
(i.e., without the participation of the victim users), because an infected machine could
self-duplicate the email worms to all the users in the address book on the computer, and
thus the adversary could launch more advanced attacks such as coordinated Distributed
Denial of Service (DDoS).

In this paper we envision and characterize (in Section 2) a class of potentially even
more catastrophic attacks implemented via what we call “malicious impostor emails”
that would directly target the cryptographic keys stored on the victim machines (via
whatever means). As a first step in dealing malicious impostor emails, we present a
solution that can mitigate their damage. The solution is called MAUDE, which stands
for “Mutiserver Authentic User DEtector” (see Section 3). We discuss the integration of

1Supported in part by a grant from the UTSA Center for Infrastructure Assurance and Security.
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MAUDE into real-life email systems, and present the preliminary performance analysis
result in Section 4. We discuss the related works in Section 5 and conclude the paper in
Section 6.

2. The Malicious Impostor Emails Problem

The authors have often received emails that falsely claim to be from some colleagues
or friends. These emails were easy (for them) to recognize because the non-attachment
content was not something the claimed sender should/would write, and the attachment
was quite obviously something they should not execute (or “double click”). This is just
a simple example of how easy the email headers (e.g., the sender address) can be faked
by even a not-so-sophisticated adversary. This was an alert and inspired us to ask the
following question:

What if the email header and non-attachment content of an email looks perfectly like
something the claimed sender would write, while the malicious attachment also looks
legitimate so that it will likely be “double-clicked” by the recipient?

Informally, we call such emails “malicious impostor emails.” Before we give a formal
definition, we need to establish a good understanding of the possibility of the attack and
its potential damage.

How are “malicious impostor emails” possible? We believe that several causes make
malicious impostor emails possible. First, email headers (e.g., the From and Subject
fields) can be faked easily. Since the From field typically plays an important role in a
recipient’s reaction to an email (e.g., the tendency to trust or distrust it), it would make
an attack succeed relatively easily if the adversary faked the From field appropriately.
What could make this strategy effective from an adversary’s perspective is that it is now
very easy for an adversary to glean information such as “who would send whom emails”
and “who would be in one’s email address book” so that the appropriately faked emails
might be able to bypass some filters (e.g., those that target spam). The incidents we ex-
perienced suggest that email addresses that have appeared on our department’s webpage
have been abused by the adversary to send an email to Bob while claiming it was sent
by Alice. As another example of this type of social-engineering based attack, we observe
that it is tremendously easy for an adversary to collect the information about “who have
co-authored papers with whom” (e.g., via the DBLP website). This has a severe conse-
quence because it is likely that emails claiming to be from some co-author would pass
any countermeasures without much difficulty.

Second, it is possible for an adversary to send a recipient a faked email such that
non-attachment content looks perfectly meaningful. This is so because email communi-
cations are typically in cleartext, and thus an eavesdropper can have access to legitimate
emails. As a toy example, suppose Alice just sent Bob a legitimate email with an email
content denoted by α. Then an adversary who has eavesdropped on the communication
channel could simply send an email to Bob by faking the header and making the content
α followed by something like “PS: attached is a recent picture taken in Hawaii.” It is
likely that Bob will “double-click” the attachment.

What would be the payload of malicious impostor emails? We are concerned with
malicious impostor emails that target at critical information such as cryptographic keys.
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In spite of the exciting progress in cryptography in the past years (e.g., threshold cryp-
tography following [6]), it is still crucial to ensure that average users’cryptographic keys
be appropriately protected. This is so because, in order for cryptography (or a public key
infrastructure) to be widely utilized in real life activities, the large population of users
should be assured that their cryptographic keys are nearly as secure as, for instance,
their biometrics (such as fingerprints). Otherwise, large-scale deployment of cryptogra-
phy may become useless, if not doing more harm than good. Towards this end, we believe
that malicious impostor emails are an effective means that can be exploited to compro-
mise cryptographic keys (e.g., by embedding a Trojan Horse or Cryptovirus [19]), and
that systematic investigation should be conducted so that their damage can be mitigated,
if not prevented altogether.

Malicious impostor emails vs. spam/phishing emails: Here we highlight some issues
regarding the relationship between malicious impostor emails and spam/phishing emails;
we will discuss it in more detail in Section 5. As mentioned before, spam messages are
unsolicited emails that typically do not exploit the innocent machines’ vulnerabilities,
as they are motivated by economical benefit and thus the spammers are still rational.
Phishing emails could lead to severe consequences, but only after the innocent users are
fooled into clicking embedded web links and entering their usernames and passwords. In
contrast, malicious impostor emails are launched by an adversary that does not have to
be rational. As a consequence, solutions to spam and phishing emails do not necessarily
apply to the problem of the malicious impostor emails. As an extreme example, the idea
of a whitelist, which may be effective in mitigating spam, is doomed in dealing with
malicious impostor emails, because the adversary can perfectly fake the From field so
that the email looks perfectly like one from the legitimate sender.

Malicious impostor emails vs. email worms: We also highlight the potential difference
between email worms and malicious impostor emails; more details are discussed in Sec-
tion 5. Email worms often launch destructive attacks such as Distributed Denial of Ser-
vice (DDoS), and typically try to infect as many machines as soon as possible. On the
other hand, malicious impostor emails may only be interested in breaking certain victim
machines pre-selected by the adversary. To this end, malicious impostor emails may cor-
rupt some users’ computers as their “step stones” and may not actually do any harm until
they have reached the targeted victims, and could adopt even more advanced and crafty
strategies to bypass or compromise the deployed countermeasures (e.g., they may spread
slowly in a steganographic way).

Summary: Suppose an email consists of three parts: a header (including the From field),
a non-attachment content (i.e., the email body that is not part of the attachment), and an
attachment. For a given email, denoted by EMAIL, let sender(EMAIL) be the sender id
(i.e., the value in the From field of the header). For each email user U , let whitelistU be
the whitelist of email addresses that will be accepted by U , FilterU be a filter that takes as
input an email, analyzes its non-attachment content, and outputs a decision on whether
it thinks the email is suspicious (e.g., a spam or phishing email), wormScannerU be a
worm/virus scanner that takes as input an email, analyzes its attachment, and outputs
a decision on whether the attachment is suspicious. We assume that FilterU is perfect,
meaning that any spam or phishing email will be detected. However, wormScannerU is
not perfect, meaning that it can only detect the malicious attachments that possess known
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signatures; they have limited success in dealing with polymorphism worms/virus and
cannot deal with unknown (zero-day) worms.

Definition 1 (malicious impostor email) A malicious impostor email is an email, denoted
by EMAIL, sent to a recipient U with (whitelistU , FilterU , wormScannerU ) such that

1. Pr[sender(EMAIL) ∈ whitelistU ] = 1, meaning that the email can always per-
fectly fake the email header information including the sender’s email address and
perhaps the IP addresses incorporated in the email header.

2. Pr[FilterU (EMAIL) outputs “suspicious”] = 0, meaning that the non-attachment
content is perfect and cannot even be detected by a human being.

3. Pr[wormScannerU (EMAIL) outputs “suspicious”] = θ for some 0 ≤ θ < 1.

The ultimate goal is to allow automatic detection of all malicious impostor emails
so that they can be appropriately processed, although in what follows we are only able to
present a partial solution called MAUDE.

3. MAUDE: Multiserver Authentic User DEtection

3.1. Model

We consider a system consisting of multiple email servers. Each server has a set of le-
gitimate users that can utilize its service. We call the outgoing email server the physi-
cal machine which actually initiated the sending of a sender’s email, and the incoming
email server the physical machine which delivers a message to the receipient. Typically,
an email takes a path consisting of at least one email server. That is, a path starts with
the sender’s physical email server and ends at the recipient’s physical email server; the
servers on the path between may be called relays). Then, the first server on the path is
the outgoing server, and the last server on the path is the incoming server. Therefore, we
are only interested in the outgoing and incoming servers, and will ignore the relays.

We assume that (a subset of) the servers have some established trust, which may
be fulfilled by each pair of email servers sharing a common secret (i.e., a cryptographic
key). This would be feasible if the system of interest is under the same administrative
domain (e.g., a campus network or the network of a state university system); We will
discuss more on this assumption below.

We consider a probabilistic polynomial-time adversary that intends to send malicious
impostor emails with the intent that the recipients will “double-click” the attachment.

The basic idea underlying MAUDE is very simple. When a recipient’s email server
(i.e., the incoming email server) receives an email with an attachment that claims to be
from some server (i.e., the alleged outgoing email server), the incoming email server will
contact the alleged outgoing email server to verify that it sent that specific email. If so,
the email is processed as in the original email system; otherwise, the email is suspicious
and appropriate action is taken (e.g., thrown into some special folder with an explicit
alert or even deleted).
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3.2. Detailed Description

At an abstracted level, MAUDE consists of several (distributed) algorithms. Before we
present the algorithms, we need to introduce some notations. Let sender be the sender
of an email and recipient be the recipient of an email, both in the form of the string
“user@domain”, where user is the username and domain is the hostname concate-
nated with “.” and the top-level domain name. Let subject be the subject of the email
and body be the email content itself, containing both the text message (if present) and
the attachment.

The above values can be obtained from the real-life email system, namely Sendmail
in our case study, via the following algorithm getMaudeMessage. This algorithm’s
design is based on the observation that Sendmail prepares the SMTP payload as a list
of headers followed by the email message. A header has two members field and value,
where field holds the type of header and value holds its content. Let Headers be the set
of headers in the email and email be the email message itself. The following algorithm
takes as input (Headers, email), which is provided by Sendmail, and returns the desired
(sender, recipient, subject, body).

getMaudeMessage(Headers, email)
FOREACH header ∈ Headers

IF (header.field =“From”)
sender← header.value

IF (header.field =“To”)
recipient← header.value

IF (header.field =“Subject”)
subject← header.value

body ← email
Return (sender, recipient, subject, body)

Let each outgoing email server maintain a database DB for the emails it has sent. An
entry of DB is of the format (sender, recipient,H(sender, recipient, subject, body)).
Each outgoing or incoming email server maintains a key tables of entry format
(peer, key), where peer is another server which shares its common secret key. Each
server also runs a MAUDE process which will operate over the DB.

In order fulfill its purpose, MAUDE will treat the following building-block algo-
rithms as black-box in nature, but whose functionalities are well-understood:

• host(emailAdd) returns the hostname of the email address.
• domain(emailAdd) returns the domain name of the email address.
• getKey(machine) returns the key shared between the server that is running this

algorithm and the remote sender/recipient server called machine.
• oldSend(sender, recipient, subject, body) is the original email sending func-

tionality (e.g., the one implemented by Sendmail).
• oldReceive(sender, recipient, subject, body) is the original email receiving

functionality (e.g., the one implemented by Sendmail).
• impostor(sender, recipient, subject, body) handles the impostor emails accord-

ing to a policy (e.g., placing them in a special folder or deleting them).
• H is a collision-resistant hash function.
• HMAC is a secure message authentication code such as HMAC-SHA1 [4].
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MAUDE consists of the following algorithms.

• addMaude(sender, recipient, α) updates DB with a new entry. This algorithm
is initiated by the outgoing server and executed by its MAUDE.

• queryMaude1(sender, recipient, subject, body) determines whether the entry
(sender, recipient, subject, body) appears in DB. This algorithm is initiated by
the incoming server and executed by its MAUDE.

• queryMaude2(sender, recipient, subject, body) asks the local MAUDE to check
if the email was sent by the claimed server. This algorithm is initiated by the
incoming server and executed by its MAUDE.

• queryPeerMaude(sender, recipient, subject, body, α, r, β) is an interactive al-
gorithm between an incoming MAUDE and an outgoing MAUDE. It is initiated
by the incoming server’s MAUDE and executed by the remote outgoing server’s
MAUDE.

• newSend(sender, {recipienti}1≤i≤n, subject, body) is the extended email-
sending algorithm run by the outgoing server.

• newReceive(sender, recipient, subject, body) is the extended email-receiving
algorithm run by the incoming email server.

Their precise functionalities are described below.

addMaude(sender, recipient, α)
DB← DB ∪ {(sender, recipient, α)}

queryMaude1(sender, recipient, α)
IF ((sender, recipient, α) ∈ DB) THEN

DB← DB \ {(sender, recipient, α)}
Return TRUE

ELSE Return FALSE

queryMaude2(sender, recipient, α)
k ← getKey(host(sender))
select a random r
β ← HMAC(k; sender, recipient, α, r, 0)
γ ← queryPeerMaude(sender, recipient, α, r, β)
IF (γ = HMAC(k; sender, recipient, α, r, 1)) THEN

Return TRUE

ELSE Return FALSE

queryPeerMaude(sender, recipient, α, r, β)
IF ((sender, recipient, α) /∈ DB) OR (getKey(host(recipient)) =⊥)THEN

Return ⊥
ELSE

k ← getKey(host(recipient))
IF (HMAC(k; sender, recipient, α, r, 0) = β) THEN

DB← DB \ {(sender, recipient, α)}
Return HMAC(k; sender, recipient, α, r, 1)

Return ⊥
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newSend(sender, {recipienti}1≤i≤n, subject, body)
FOR i = 1 to n

IF (getKey(host(recipienti)) �=⊥) THEN
addMaude(sender, recipienti, H(sender, recipienti, subject, body))

oldSend(sender, {recipienti}1≤i≤n, subject, body)

newReceive(sender, recipient, subject, body)
IF (host(sender) = host(recipient)) THEN

IF (queryMaude1(sender, recipient,H(sender, recipient, subject, body)))
THEN oldReceive(sender, recipient, subject, body)
ELSE impostor(sender, recipient, subject, body)

ELSE IF (getKey(host(sender)) �=⊥) THEN
IF (queryMaude2(sender, recipient,H(sender, recipient, subject, body))

THEN oldReceive(sender, recipient, subject, body)
ELSE impostor(sender, recipient, subject, body)

ELSE oldReceive(sender, recipient, subject, body)

3.3. Analysis

Security of MAUDE against a probabilistic polynomial-time adversary is clear (based on
the security of the message authentication codes).

The extra computational overhead imposed on the servers is small (i.e., computing
some message authentication tags). The size of the database DB grows proportionally to
the number of email-sending requests, and decreases as the emails have been confirmed.
Thus, on average the size of DB is relative to the difference between the email-sending
requests and the email-confirmation requests.

3.4. Discussion on Assumptions and Design Rationale

We observe that MAUDE’s utility applies when there is some well-established trust be-
tween the email servers. This is reasonable for email servers that are under the same ad-
ministrative jurisdiction, or emails servers that are administered by some collaborative
partners (e.g., all the schools of a state university system). This already suffices to solve
the malicious impostor email problem in the setting that the “claimed” senders (i.e., the
senders listed in the headers of the malicious impostor emails) are indeed affiliated with
the email servers that are administered by the collaborative partners.

What if the servers do not have the above-mentioned initial trust relationship? An
immediate approach is to assume the existence of a (potentially small-scale) PKI that
certifies the public keys of the email servers in one way or another. Based on this, there
are numerous cryptographic protocols that suffice to establish initial trust and common
keys between the servers. If it is possible to establish such a “meta” PKI, we can uti-
lize it to achieve a robust large-scale PKI so that the large population of average users’
(rather than the small-population of servers’) keys can be well-protected from malicious
impostor emails.

But if we assume the existence of the initial trust, why don’t we simply let each out-
going server associate with every email a digital signature or message authentication tag?
The reasons against this are threefold. First, we believe that an ultimate solution should
not be solely based on the existence of such an established, though small-scale, trust
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structure. Under certain circumstances, it would still be useful even if we can achieve
best effort security in the following sense: An incoming server still contacts an outgoing
email server to check if a claimed email was indeed sent by it, even if this communication
is not protected by a cryptographic means (due to the absence of a common key). In this
case, the communication initiated by the incoming email server could become another
factor of authentication (or the adversary has to use some real email server with real do-
main name and IP address, which would help forensics investigation, or the adversary
has to hijack many TCP sessions, which may significantly limits its effectiveness).

Second, we are investigating methods that can help a pair of servers that can es-
tablish a certain degree of trust without relying on any trusted third parties. Of course,
the established trust is weaker than the one established via some trusted third parties;
however, this is still promising because the trust may now be exclusive between the two
servers.

Third, the way the real-life email systems operate is quite complicated. For example,
it is rather difficult for an outgoing email server to figure out which physical machine is
the real destination machine; on the other hand, it is relatively easy for the real destination
machine to determine which physical machine was the sender (initiator) of the email.
Therefore, the design makes it possible for the destination server to only contact the
initial sending server; this avoids involving the numerous email relays that are indicated
in the email headers (which could be quite long), and makes the scheme practical.

4. Integrating MAUDE into Email Systems: Experiments, Performance, and
Effectiveness

4.1. Methodology
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Figure 1. A low-level view of MAUDE
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In order to test the effectiveness of MAUDE, we implemented it into Sendmail, a
widely deployed email system. To avoid a modification of the SMTP protocol or delay
the communication between the two email servers, the modified Sendmail server waits
until the SMTP protocol has completed before extracting the headers and constructing
the message it sends to its local MAUDE. In other words, we devise a scheme to modify
Sendmail while encapsulating the SMTP protocol from MAUDE. As a result, an email
system with MAUDE operates as follows (see also Figure 1).

1. Alice logs into her local email client.
2. After composing a message, Alice’s email client logs in to the server.
3. Alice’s password is sent to an account verifier to determine her authenticity.
4. The account verifier grants Alice access to her account.
5. The server contacts the email client to send the message.
6. Alice’s email client sends the message to the outbox in her account.
7. The system delivers the message to the email server for delivery.
8. Alice’s email server executes getMaudeMessage(Headers, email) which re-

turns (sender, recipient, subject, body). Immediately after, Alice’s email server
executes addMaude(sender, recipient,H(sender, recipient, subject, body)).

9. Alice’s email server server contacts Bob’s email server to transmit the message.
10. Bob’s email server accepts the message, recording the other server’s hostname

and IP address.
11. Alice’s email server delivers the message.
12. Bob’s email server executes getMaudeMessage(Headers, email) which returns

(sender, recipient, subject, body). Immediately after, Bob’s email server exe-
cutes queryMaude2(sender, repicient,H(sender, recipient, subject, body)).

13. Bob’s MAUDE activates queryPeerMaude(sender, recipient, α, r, β).
14. Alice’s MAUDE executes queryPeerMaude(sender, recipient, α, r, β) and re-

turns γ.
15. Bob’s MAUDE returns TRUE (supposing queryPeerMaude returns the correct

value).
16. The email server routes the message to Bob’s inbox.
17. Bob logs into his local email client.
18. To retrieve his email, Bob’s email client logs in to the server.
19. Bob’s password is sent to an account verifier to determine his authenticity.
20. The account verifier grants Bob access to his account.
21. The server delivers the email in Bob’s inbox to the email client.

4.2. Metrics

The metrics we are interested in are the following:

• The delay incurred by MAUDE on the outgoing email server. The delay is defined
as the time period between the point that Sendmail has accepted the message for
delivery and is about to contact its local MAUDE and the point that the local
MAUDE has updated the database.

• The delay incurred by MAUDE on the incoming email server. The delay is defined
to be the time period between the point that the SMTP protocol has begun and the
point that the email is thrown into the email box (or discarded).

• The effectiveness and accuracy of MAUDE’s decisions.
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4.3. Experimental System Settings
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Figure 2. Integrating MAUDE into real-life email systems

The system environment is depicted in Figure 2. The email servers are within a
university campus network, and the email clients are both within and outside the campus
network. The email servers are called hermes and jupiter, respectively. There are
two email client machines: poseidon acted as a friendly external computer within the
LAN with authorized access to hermes through an email client, and plato was an
adversary client machine within the campus network. The purpose of plato is to send
faked emails but make them look as though they were sent by legitimate users through
a tool like Netcat. A fifth machine, euclid, tested the performance of MAUDE on a
non-dedicated internet connection. The three servers, hermes, jupiter, and euclid
recognized each other by sharing some pair-wise keys. Figure 3 reviews the concrete
configurations of the machines and networks.

Machine Processor Internet Connection Relavant Software
hermes 2.26 GHz P4 Gigabit LAN Sendmail 8.12.9, MAUDE

jupiter 2.80 GHz P4 Gigabit LAN Sendmail 8.12.9, MAUDE
poseidon 2.26 GHz P4 Gigabit LAN Pooka Email Client

plato 2.80 GHz P4 Gigabit LAN Netcat, mutt
euclid 2.40 GHz P4 100 Megabit Cable Sendmail 8.12.9, MAUDE

Figure 3. System Settings

MAUDE was written in Java 1.5.0 and ran on the Java Virtual Machine. For pro-
cessing incoming and outgoing emails, Java’s crypto library was used to compute any
hash value or HMAC it needed, in both cases using the SHA1 algorithm. For testing, a
program simulating Sendmail on each server sent valid messages to its local MAUDE.
This program, implemented in C, used Peter Gutmann’s cryptlib 3.1 library to compute
the SHA1 hash value for the tuples it sent to MAUDE. This simulator measured the extra
delay time MAUDE added to the delivery of an email.



E. Kartaltepe and S. Xu / On Automatically Detecting Malicious Impostor Emails 11

4.4. Performance

To examine the delay incurred by MAUDE on the sender’s email server, time was marked
before and after each transmission over 10000 requests. We repeated this test ten times
and took the average over the runs. Figure 4 shows the trends over the 10000 requests.
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Figure 4. Outgoing Emails over 10000 trials

For incoming emails, we ran three tests of 10000 concurrent requests at the rates
of 100, 1000, and 5000 requests per minute, respectively. These stress tests were imple-
mented to show how MAUDE operates with a high-volume incoming email server. For
each of the three experiments, we obtain the corresponding delay time by averaging 10
independent runs (Note that a single run of the simulation at the rate of 100 requests
per minute requires 100 minutes for all 10000 requests). In plotting the data, we fit the
curves by taking a moving average of 500 requests for a clear representation of each
trend. We plotted the delay time for the three stress tests for the LAN and WAN MAUDE
in Figure 5.

In the LAN experiments, the Sendmail simulator on jupiter delivered a valid
message to the local MAUDE. In turn, the local MAUDE contacted hermes with a
valid message to determine if hermes sent the message. We recorded the time it took
for hermes to respond to each request from jupiter from the moment Sendmail
constructed the message for MAUDE until after it processed MAUDE’s return message.
In the WAN experiments, the simulator on euclid operated in the same fashion.

Delay times taken as an average are summarized in Figure 6. The time for Sendmail
to send an email averaged under 177 milliseconds. At the rate of 100, 1000, and 5000
requests per minute, the delay time increase due to a LAN MAUDE is increases by
23.8%, 40.6%, and 81.1%, respectively. However, even via a WAN, MAUDE’s delay
time is less than the original architecture’s processing capability.

4.5. Effectiveness

Using the Pooka email client [15] on poseidon, the email client showed no noticeable
delay when MAUDE was activated versus when it was absent. Since MAUDE’s effects
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Figure 5. Incoming emails over 10000 trials via a LAN MAUDE (top) and WAN MAUDE (bottom)

Transactions Original Incoming Email Incoming Email
Per Minute Architecture (LAN Network) (WAN Network)

100 176.406 217.307 224.061
1000 176.406 248.619 256.440
5000 176.406 319.491 332.351

Figure 6. Average delay times for each experiment (milliseconds)

are encapsulated away from any email agent implementation, no special setup to the
client was necessary.

When using Netcat [14] on plato to send bogus email messages to hermes, ev-
ery email was checked against the supposed sender’s MAUDE, and each came back as
fraudulent. This was the case when using the more user-friendly mutt email client [13]
to send impostor emails as well. Moreover, every email sent by a legitimate user was not
flagged as a possible impostor. Thus, we note that no false positive or false negative is
possible.

5. Related Work

On the relationship between malicious impostor emails and PKI. In order for a public
key infrastructure (PKI) to achieve its fully-expected utility, it is necessary to ensure that
the cryptographic keys are appropriately protected. Advanced cryptographic mechanisms
such as threshold cryptography [6] have been invented to protect critical cryptographic
functionalities (e.g., the signing function of a certificate authority) so that the damage
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incurred by sophisticated attackers could be mitigated. We observe, however, that the
protection of average users’ cryptographic keys would be an equally important factor
in deploying a PKI. Unlike in the setting of the servers, the protection of individual
cryptographic keys could be far more challenging (given that smartcards are not widely
deployed), particularly because the individual users’ machines are always used to fulfill
their routing tasks without being administered by professionals (servers are relatively
well-protected by professionals who may keep patching the relevant software programs).
Moreover, there is a wide spectrum of ways to compromise an individual’s machine
(and thus the cryptographic keys). One such method is the above described “malicious
impostor emails” whose malicious payloads can compromise one’s private keys (e.g.,
[19]). This explains why dealing with malicious impostor emails is an essential part of
protecting a PKI. On the other hand, it would be ideal if MAUDE can get support from
a small-scale PKI (e.g., one for the email servers of a relatively small population), then
a large-scale PKI (involving a large population of average users) built on it can be better
protected—this is the case of MAUDE.

More on malicious impostor email vs. email worms. Current worms (e.g., [16,21,18,
11,17,22]) are typically high-speed because they want to infect as many machines as
fast as possible. Since “high-speed spreading” does not necessarily apply to malicious
impostor emails, they need new solutions.

More on malicious impostor emails vs. spam/phishing. Spam emails are quite differ-
ent from malicious impostor ones, and therefore solutions to countering the former might
not be effective at combating the latter. As a consequence, an approach founded on eco-
nomic incentives that could be effective against spam would not necessarily translate to
resolving the problem of malicious imposter emails. Goodman [10] analyzed the prob-
lem of preventing outgoing spam while assuming that the adversary is rational, but this
solution would not work against malicious emails because the adversary launching them
does not have to be rational.

Machine learning or data mining based filters [9] for detecting or blocking potential
spam are not necessarily effective in detecting or blocking malicious impostor emails on
their own. This is so because the email content, besides the offending attachment, could
be an otherwise perfectly legitimate email.

The puzzle approach, based on computational puzzles [8] or their recent variants
called “moderately hard, memory-bound functions” [2,7], could be effective in dealing
with spam. Similarly, the related virtual stamps or other payment schemes (e.g., [1,12])
could be successful as well against spam, provided that spammers have only a reasonable
budget (recall that spammers are typically motivated by economic incentives). However,
they do not solve the problem of malicious impostor emails as they involve the end (or
average) users. Moreover, introducing cryptography-based stamps indeed bring in new
problems that the end users need to protect their cryptographic keys appropriately. We
need a solution that is transparent to end users.

On the relationship with other loosely related works. There are some other works
that are loosely related to ours. For example, certified emails [3,5,20] deal with fair
exchange between a recipient’s receipt and a sender’s email. Although there may be
some resemblance between the certified email protocols and our approach to dealing
with impostor emails, the two problems are indeed fundamentally different. First, the
ultimate goal of certified emails is to fulfill fair exchange transactions between two end
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users, not necessarily between the corresponding incoming and outgoing email servers
(unless one would like to make the unrealistic assumption that the users fully trust, and
thus would even give their private keys to, the email servers). In contrast, our approach to
dealing with impostor emails is contained to the interactions between the email servers.
Indeed, such an ideal solution, as what we have proposed, should be transparent to the
end users. Second, in contrast to the case of certified emails, the sender of malicious
impostor emails (i.e., the adversary) never has the intent to conduct a fair exchange with
a (victim) recipient. Indeed, the adversary always tries to hide itself so that it will not be
held accountable.

6. Conclusion and Future Work

We introduced the problem we call “malicious impostor emails”—emails that can per-
fectly fake email headers and possess non-attachment content that can flawlessly mimic
legitimate ones. We explored a partial solution to this problem as a first step toward coun-
tering this powerful attack. We are continuing the investigation in the following direc-
tions:

• How can we remove or weaken the reliance on the initial trust between the email
servers? This is particularly relevant when we consider the Internet as a single
system.

• Our solution is effective provided that every involved email server has MAUDE
installed. The hope is that MAUDE can be employed incrementally. So can we
establish an analytical model to understand the effectiveness of the incremental
deployment of MAUDE?
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