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Abstract. The notion of fair e-cash schemes was suggested and imple-
mented in the last decade. It balances anonymity with the capability
of tracing users and transactions in cases of crime or misbehavior.
The issue was raised both, in the banking community and in the
cryptographic literature. A number of systems were designed with an
off-line fairness, where the tracing authorities get involved only when
tracing is needed. However, none of them is based on the original RSA
e-cash. Thus, an obvious question is whether it is possible to construct
an efficient fair e-cash scheme by retrofitting the fairness mechanism on
the original RSA-based scheme. The question is interesting from, both,
a practical perspective (since investment has been put in developing
software and hardware that implement the original scheme), and as
a pure research issue (since retrofitting existing protocols with new
mechanisms is, at times, harder than designing solutions from scratch).
In this paper, we answer this question in the affirmative by presenting
an efficient fair off-line e-cash scheme based on the original RSA-based
one.
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1 Introduction

In his seminal paper [C82], David Chaum introduced the notion of e-cash and
presented the first e-cash scheme based on RSA ([RSA78]) blind signature. This
scheme prevents the users from double-spending e-coins by on-line checking their
freshness against a list of e-coins that have been spent. The overhead of this on-
line checking process had inspired the notion and first implementation of off-line
e-cash scheme [CFN88], which is also based on RSA blind signature but ensures
that the identity of a double-spender will be exposed (after the fact). The above
schemes preserve information-theoretic anonymity for users who do not double-
spend any e-coin; this leads to potential abuses as was initially discussed in
[vSN92]. In the last decade, this vulnerability has inspired numerous fair (or,
conditionally anonymous) off-line e-cash schemes, but none of them (see, for
example, [CMS96,FTY96,JY96]) is based on the original RSA e-cash; instead,
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they all use discrete logarithm based cryptosystems. Thus, it has been open
whether it is possible to construct an efficient fair off-line e-cash scheme that
retains the original RSA-based scheme. In this paper, we answer this question
in the affirmative.

1.1 Our Contributions

We show how to incorporate fairness into the original RSA-based e-cash by
presenting an efficient fair off-line RSA e-cash scheme. In the resulting scheme,
fairness is implemented by deploying a set of servers that maintain a threshold
cryptosystem such that (1) the servers stay off-line when nothing goes wrong
(i.e., they are invoked only when there is a need to revoke anonymity), and (2)
the servers are only assumed to preserve user anonymity. Our scheme preserves
the system architecture of its underlying scheme, namely the Chaum-Fiat-Naor
one [CFN88], which has been developed by companies and has been deployed
experimentally in the real world. These facts make retrofitting fairness while
retaining the system architecture important from a business perspective. Our
scheme is flexible in the sense that, as a special case, it can retain the original
Chaum-Fiat-Naor coin structure as is (for software compatibility reasons), while
it also allows other desirable coin structures.

Beyond achieving the above solution, there is a crucial technical question
related to our solution that we believe deserves special mention: In order to
implement fairness, what properties should the cryptosystem possess (e.g., is it
enough to deploy a standard semantically-secure cryptosystem like ElGamal)?
Although it may seem intuitively sufficient to deploy the ElGamal cryptosystem,
we actually show that it is not so in the context of fair e-cash where the adver-
sary has additional capability in the possible fault scenario (see Section 3.3 for
details).

Remark 1. The e-cash scheme due to Juels [J99] inherits the e-coin structure
of [C82]. However, this scheme involves an on-line Trusted Third Party (TTP)
in the withdrawal sessions; the use of such an on-line TTP follows [BGK95].
Moreover, this scheme assumes a trust model that is strictly stronger than its
counterpart in our scheme: there the TTP, in addition to being liable for pre-
serving anonymity, is also assumed not to frame a user or steal a user’s money;
in our scheme, the TTP (namely the revocation servers) is only liable for pre-
serving anonymity (i.e., the revocation servers have no capability to frame users
or steal users’ money).
Remark 2. The distribution of the revocation capability among a set of servers
is done in order to implement better anonymity, as was shown in [MP98].
Organization:
In Section 2 we present the model and some basic goals of e-cash schemes. In
Section 3 we introduce the basic ideas underlying our approach and construction.
In Section 4 we present the cryptographic tools that will be used to implement
fairness. We present our fair off-line RSA e-cash scheme in Section 5, and analyze
its properties in Section 6. We discuss some deployment issues and extensions in
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Section 7 and conclude in Section 8. Due to space limitation, we have eliminated
in the current version certain details which will be given in the full version of
this paper.

2 The Model and Goals

The Participants. We consider the following entities: a bank that issues e-coins
(which possess a structure we call the “coin structure”), a set of n revocation
servers P1, · · ·, Pn that maintain a threshold decryption capability for revoking
anonymity, a set of users that withdraw and spend e-coins, and a set of merchants
that accept e-coins. All of the entities are modeled as probabilistic polynomial-
time interactive Turing machines.

The Communication Channels. The communication channels, except those
channels between the servers in the revocation process, are asynchronous. Re-
garding the communication channels between the servers in the revocation pro-
cess, we assume that P1, · · ·, Pn are connected by a complete network of pri-
vate (i.e., untappable) point-to-point channels, and that they have access to a
dedicated broadcast channel. Furthermore, we assume a fully synchronous com-
munication model such that messages of a given round in the protocol are sent
by all parties simultaneously and are delivered to their recipients. However, all
the results in this paper apply to the more realistic partially synchronous com-
munication model, in which messages sent on either a point-to-point or the
broadcast channel are received by their recipients within some fixed time bound.
Note that when we deploy the system in the real world, these assumptions can
be substituted with appropriate cryptographic protocols that enforce “rounds
of communication” using commitment schemes before decommitment of actual
values.

The Adversary. We consider a probabilistic polynomial-time adversary that
may initiate various protocols. The adversary is t-threshold meaning that it is
able to corrupt at most t revocation servers. The adversary is malicious in that
it may cause the corrupt parties to arbitrarily divert from the specified protocol.
We assume that the adversary is static, which means that it chooses the parties it
will corrupt at the initialization of the system. (We defer to Section 7 a detailed
discussion on the issue of a subtle “suicide” attack against the anonymity of the
honest users; in this attack an element in the coin structure of a honest user is
embedded into a coin structure of a dishonest user who will commit a crime in
order to compromise the anonymity of the honest user. Such an attack requires
knowledge of coin structure of other users and potentially involves a bank which
does not keep secret the coin database.)

2.1 The Goals

We focus on the following basic goals of e-cash (presented informally):
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1. Unforgeability: After initiating polynomially many withdrawal sessions, the
adversary is still unable to output an e-coin that is different from all the
e-coins obtained in the withdrawal sessions. In other words, no adversary
can succeed in conducting a “one more coin forgery.”

2. Revocability: The revocation servers can collaboratively expose the e-coin
issued in a withdrawal session and associate a given e-coin with the corre-
sponding withdrawal session.

3. Anonymity: An adversary succeeds in breaking anonymity if it can associate
an e-coin with the corresponding withdrawal session initiated by a honest
user, or associate two e-coins with the same honest user (although the user’s
identity may be unknown). We require the probability of an adversary suc-
cessfully breaking anonymity to be negligible.

3 The Basic Ideas

In this section, we first recall Chaum-Fiat-Naor’s off-line RSA e-cash scheme
[CFN88]; this is necessary for understanding our approach. Then, we present
the basic ideas underlying our approach.

3.1 The Chaum-Fiat-Naor RSA E-cash Scheme

This scheme consists of four protocols: The Initialization, The With-

drawal, The Payment, and The Deposit.

The Initialization Protocol. Let f and g be two-argument collision-free
functions, where f behaves like a random oracle and g has the property that fix-
ing the first argument gives a one-to-one or c-to-1 map from the second argument
onto the range.
1. The bank initially publishes an RSA signature verification key (3, N), where

the modulus N is the multiplication of two prime numbers P and Q that
are chosen according to the main security parameter κ.

2. The bank sets a secondary parameter l.
3. A user Alice opens a bank account numbered u and the bank keeps a counter
v associated with it.

The Withdrawal Protocol. Let || denote string concatenation. This proto-
col has the following steps.
1. Alice chooses ai, ci, di, and ri, 1 ≤ i ≤ l, independently and uniformly at

random from Z∗
N .

2. Alice sends to the bank l blinded candidates Bi = r3i · f(xi, yi) mod N for
1 ≤ i ≤ l, where xi = g(ai, ci) and yi = g(ai ⊕ (u||(v + i)), di).

3. The bank chooses a random subset of l/2 blinded candidate indices R =
{ij}1≤ij≤l,1≤j≤l/2 and transmits it to Alice.

4. Alice presents the ai, ci, di, and ri for all i ∈ R, and the bank checks
their semantical correctness (i.e., that their structure follows the protocol
specification). To simplify notations, let R = {l/2 + 1, l/2 + 2, · · ·, l}.
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5. The bank gives Alice
∏

1≤i≤l/2B
1/3
i mod N and charges her account one

dollar. The bank also increments Alice’s counter v by l.
6. Alice can easily extract the e-coin C =

∏
1≤i≤l/2 f(xi, yi)1/3 mod N . Al-

ice re-indexes the candidates in C according to the f values: f(x1, y1) <
f(x2, y2) < · · · < f(xl/2, yl/2). Alice also increases her copy of the counter v
by l.

The Payment Protocol. The payment protocol has the following steps.

1. Alice (anonymously) sends C =
∏

1≤i≤l/2 f(xi, yi)1/3 mod N to Bob.
2. Bob chooses a random binary string z1, z2, · · ·, zl/2.
3. For all 1 ≤ i ≤ l/2: if zi = 1, Alice sends Bob ai, ci, and yi; otherwise, Alice

sends Bob xi, ai ⊕ (u||(v + i)), and di.
4. Bob verifies the semantical correctness of the responses.

The Deposit Protocol. The deposit protocol has the following steps.

1. Bob sends an e-coin C and Alice’s responses in a payment to the bank.
2. The bank verifies their semantical correctness and credits Bob’ account. The

bank stores C, the binary string z1, z2, · · ·, zl/2 and the values ai, ci, and yi

(for zi = 1) and xi, ai ⊕ (u||(v + i)), and di (for zi = 0).

3.2 Key Observations Underlying Our Approach

An intuitive solution to incorporating fairness into the Chaum-Fiat-Naor scheme
is to deploy a set of servers for revoking anonymity such that, ideally, the servers
stay completely off-line (i.e., they are involved only when there is a need to revoke
anonymity). The key observations are:

1. We can force a user to encrypt a coin representation using a public key whose
corresponding private key is shared among the servers.

2. The revocation capability can be completely independent of the e-cash issu-
ing capability, thus we can modularly integrate different cryptosystems (for
different purposes) into a single scheme.

For concreteness, in the sequel we consider the case of DLOG-based cryptosystem
for the servers (though other systems are possible). More specifically, we let a
user encrypt H1(m) ∈ G, corresponding to which H(m) ∈ Z∗

N appears in an e-
coin, using a DLOG-based cryptosystem over a cyclic sub-group G of Zp, where
both H(·) and H1(·) are appropriate functions. An intriguing question is: Can
we employ the ElGamal cryptosystem [E85] for this purpose? Next we present
a detailed analysis that shows that ElGamal is insufficient.

3.3 Why ElGamal Cryptosystem Is Insufficient for Our Purpose?

ElGamal cryptosystem, which has been proven to be semantically secure [TY98],
may not be enough to facilitate the task of revoking anonymity. For the sake
of proving anonymity, we need to present a simulator that is able to emulate a
real-world system while embedding a Decision Diffie-Hellman (DDH) challenge



56 S. Xu and M. Yung

tuple. The key observation underlying the infeasibility is that the adversary is
allowed to invoke the revocation process, which means: the simulator must some-
how be able to decrypt ciphertexts generated by the adversary; otherwise, the
adversary is able to distinguish a simulated system from the real-world system.
(The rationale that we have to allow the adversary to invoke the revocation
process can be justified by, for instance, the following scenario: if the adversary
commits some suspicious activities then the revocation process will be invoked
in the real world; the adversary misbehaves anyway, or simply for the purpose
of distinguishing a simulation from the real-world system.) A simple solution to
this problem is to deploy some cryptosystem that is simulatable while allowing
the simulator to hold the private key.

One may suggest that we can seek to utilize the random oracle and the cut-
and-choose technique (both of them are deployed anyway) so that the simulator
not knowing the private key can get through. However, this intuition is incor-
rect. First, even if the simulator knows all the plaintexts that are output by a
random oracle (namely H1(·) in our setting), the adversary can arbitrarily plant
a single plaintext as an element in an e-coin structure. In order to have a better
understanding about this issue, let us consider the following simplified scenario:
(1) the adversary asks the oracle at two points 0 and 1, which means that the
simulator knows H1(0) and H1(1); (2) the adversary presents an ElGamal en-
cryption of H1(b) where b ∈R {0, 1}; (3) in the revocation process the simulator
not knowing the private key needs to output b. This is exactly the game used in
defining security of the cryptosystem, which means that if the simulator does not
know the corresponding private key but is able to output the correct plaintext,
then we can easily make use of the simulator to break the DDH assumption. It is
easy to see that the adversary can always play such a game in the e-cash scheme,
because it can always pass the cut-and-choose test with probability 0.5. Since
the adversary can dynamically “open” values and play with them in the game
itself, we have to cope with this more dynamic nature of adversarial behavior.
To this end, the bare ElGamal cryptosystem seems insufficient.

4 Cryptographic Tools for Revoking Anonymity

Now, we review some DLOG-based cryptographic tools that will be used as
subroutines in the rest of this paper. The reader familiar with these tools may
skip the technical description.

The Setting. Let κ′ be a security parameter of DLOG-based cryptosystems,
corresponding to which two prime numbers p and q are chosen so that q|(p− 1).
Suppose g ∈ Zp is of order q, which means that g specifies a unique cyclic
subgroup G in which the DDH assumption is assumed to hold; namely, it is
infeasible to distinguish a random tuple (g, h, u, v) of four independent elements
in G from a random tuple satisfying loggu = loghv.

A Semantically-Secure Encryption Scheme. We adopt the semantically-
secure encryption scheme appeared in [JL00], which is similar to the stan-
dard ElGamal scheme except that it uses two generators (to allow the more
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dynamic adversary). Let 〈p, q, g, h, y = gx1hx2 mod p〉 be a public key and
〈p, q, g, h, x1, x2〉 be the corresponding private key, where (x1, x2) ∈R Z2

q , g
and h are two random elements in G such that nobody knows loggh. To en-
crypt a message M ∈ G, one chooses k ∈R Zq and computes the ciphertext
(gk mod p, hk mod p, ykM mod p). To decrypt a ciphertext (α, β, γ), one com-
putes M = γ/αx1βx2 mod p.

Proof of the Same Logarithm. The following protocol is a zero-knowledge
proof that loggu = loghv. Let DLOG(g, u) = DLOG(h, v) denote such a proof.
Suppose x = loggu = loghv mod q.
1. The prover chooses k ∈R Zq, computes A = gk mod p and B = hk mod p,

and sends (A,B) to the verifier.
2. The verifier chooses a challenge c ∈R Zq, and sends it to the prover.
3. The prover sends the verifier d = c · x+ k mod q.
4. The verifier accepts if gd = ucA mod p and hd = vcB mod p.

The Fiat-Shamir transformation [FS86] can make this protocol non-interactive.

Proof of the Same Representation. The following protocol allows a
prover to prove REP (g, h; y) = REP (α, β; γ), where REP (a, b; c) denotes the
representation of c with respect to the pair of bases (a, b) [CP92]. Suppose
y = gx1hx2 mod p and γ = αx1βx2 mod p .
1. The prover chooses k1, k2 ∈R Zq, and computes A = gk1hk2 mod p and
B = αk1βk2 mod p. The prover sends (A,B) to the verifier.

2. The verifier chooses c ∈R Zq, and sends it to the prover.
3. The prover sends the verifier d1 = c·x1+k1 mod q and d2 = c·x2+k2 mod q.
4. The verifier accepts if gd1hd2 = ycA mod p and αd1βd2 = γcB mod p.

The Fiat-Shamir transformation [FS86] can make this protocol non-interactive.

Feldman-VSS(t). This protocol allows a dealer to share s ∈R Zq among a set
of players {P1, · · ·,Pn} via a t-degree polynomial [F87]. As a consequence, Pi

holds a share si such that s
(t+1,n)←→ (s1, · · ·, sn).

1. The dealer chooses a random t-degree polynomial f(z) = a0 +a1z+ · · ·+atz
t

over Zq such that s = a0. It broadcasts Al = gal mod p for 0 ≤ l ≤ t,
computes and secretly sends sj = f(j) to player Pj for 1 ≤ j ≤ n.

2. Pj (1 ≤ j ≤ n) verifies if gsj =
∏t

l=0(Al)jl

mod p. We call this equation
“Feldman verification equation”. If the verification fails, Pj broadcasts a
complaint against the dealer.

3. The dealer receiving a complaint from player Pj broadcasts sj that satisfies
the Feldman verification equation.

4. The dealer is disqualified if either there are more than t complaints in Step
2, or its answer to a complaint in Step 3 does not satisfy the Feldman

verification equation.

Pedersen-VSS(t). This protocol allows a dealer to share a pair of secrets
(s, s′) ∈R Z2

q among a set of players {P1, · · ·,Pn} via two t-degree polynomials
[P91]. This protocol also uses a pair of bases (g, h) so that loggh is unknown. As

a consequence, Pi holds a pair of shares (si, s
′
i) such that s

(t+1,n)←→ (s1, · · ·, sn)

and s′ (t+1,n)←→ (s′
1, · · ·, s′

n).
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1. The dealer chooses two random polynomials f(z) = a0 +a1z+ · · ·+atz
t and

f ′(z) = b0 + b1z+ · · ·+ btz
t over Zq. Let s

def
= a0 and s′ def

= b0. It broadcasts
Cl = galhbl mod p for 0 ≤ l ≤ t, computes and secretly sends sj = f(j),
s′

j = f ′(j) to Pj for 1 ≤ j ≤ n.
2. Pj (1 ≤ j ≤ n) verifies if gsjhs′

j =
∏t

l=0(Cl)jl

mod p. We call this equation
“Pedersen verification equation”. If the verification fails, Pj broadcasts a
complaint against the dealer.

3. The dealer receiving a complaint from Pj broadcasts the values sj , s′
j that

satisfy the Pedersen verification equation.
4. The dealer is disqualified if either there are more than t complaints in Step

2, or its answer to a complaint in Step 3 does not satisfy the Pedersen

verification equation.

Joint-Pedersen-RVSS(t). This protocol allows a set of players {P1, · · ·,Pn} to
jointly generate a pair of secrets (a, b) ∈R Z2

q via a pair of t-degree polynomials.

As a consequence, Pi holds a pair of shares (ai, bi) of (a, b) such that a
(t+1,n)←→

(a1, · · ·, an) and b
(t+1,n)←→ (b1, · · ·, bn).

1. Pi (1 ≤ i ≤ n), as a dealer, performs an instance of Pedersen-VSS(t) to

share a pair of secrets (ai0, bi0) ∈R Z2
q such that ai0

(t+1,n)←→ (si1, · · ·, sin) and

bi0
(t+1,n)←→ (s′

i1, · · ·, s′
in).

2. Pi (1 ≤ i ≤ n) builds the set of non-disqualified players QUAL. This is a
unique global name depending on the broadcast information available to all
of the honest players.

3. Pi (1 ≤ i ≤ n) holds (ai, bi) so that ai =
∑

j∈QUAL sji mod q is its share
of a =

∑
i∈QUAL ai0 mod q, and bi =

∑
j∈QUAL s

′
ji mod q is its share of

b =
∑

i∈QUAL bi0 mod q.

Rand-Gen(t). This protocol allows a set of n servers to collaboratively generate

ga mod p such that a ∈R Zq and a
(t+1,n)←→ (a1, · · ·, an) [GJKR99].

1. The severs {P1, · · ·,Pn} execute Joint-Pedersen-RVSS(t).
2. Pi (i ∈ QUAL) exposes yi = gai mod p as follows.

a) Pi broadcasts Ail = gail mod p for 0 ≤ l ≤ t.
b) Pj (1 ≤ j ≤ n) verifies if gsij =

∏t
l=0(Ail)jl

mod p. If the verification
fails for some index i, Pj broadcasts a complaint against Pi by broad-
casting sij and s′

ij that satisfy the Pedersen verification equation but
not the Feldman verification equation.

c) If there is a valid complaint against Pi (i.e., the broadcast sij and s′
ij

satisfy the Pedersen verification equation but not the Feldman ver-
ification equation), the servers reconstruct and publish ai0, fi(z), Ail

for 0 ≤ l ≤ t. Each server in QUAL sets yi = Ai0 = gai0 mod p and
y =

∏
i∈QUAL yi mod p.

d) As a result, Pj holds its share aj =
∑

i∈QUAL sij mod q of a. Note that
gaj =

∏
i∈QUAL g

sij mod p for 1 ≤ j ≤ n are publicly known.
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EXP-Interpolate. Given a set of values (v1, · · ·, vn) where n ≥ 2t + 1, if at
most t of them are null and the remaining are of the form gai mod p where
the ai’s lie on some t-degree polynomial F (·) over Zq, then we can compute
gF (0) =

∏
i∈Γ (vi)λi,Γ =

∏
i∈Γ (gai)λi,Γ , where Γ is a (t+1)-subset of the correct

vi’s and the λi,Γ ’s are the corresponding Lagrange interpolation coefficients. Let
v = Exp-Interpolate(v1, · · ·, vn).

Double-EXP-Interpolate. Suppose that (u, v) ∈ G2, and that (ai, bi) for
1 ≤ i ≤ n are the shares output in an instance of Joint-Pedersen-RVSS(t)
with polynomials F (·), F ′(·) and bases g, h. Given a set of values (ϕ1, · · ·, ϕn)
where n ≥ 2t+1, if at most t of them are null and the remaining are of the form
uaivbi mod p, then we can compute

ϕ =
∏

i∈Γ

(ϕi)λi,Γ =
∏

i∈Γ

(uaivbi)λi,Γ =
∏

i∈Γ

(uai)λi,Γ (vbi)λi,Γ

= (
∏

i∈Γ

(uai)λi,Γ )(
∏

i∈Γ

(vbi)λi,Γ ) = uF (0)vF ′(0) mod p,

where Γ is a (t + 1)-subset of the correct ϕi’s, and the λi,Γ ’s are the Lagrange
interpolation coefficients. Let ϕ = Double-EXP-Interpolate(ϕ1, · · ·, ϕn).

5 A Fair Offline RSA E-cash Scheme

We assume both H : {0, 1}∗ → Z∗
N and H1 : {0, 1}∗ → G behave like ran-

dom oracles [BR93], where N is an RSA modulus and G is a group over which a
DLOG-based public key cryptosystem is defined (see details below). The scheme
consists of five protocols: The Initialization, The Withdrawal, The Pay-

ment, The Deposit, and The Revocation.

5.1 The Initialization Protocol

This protocol has the following steps.

1. Given a security parameter κ, the bank generates a pair of RSA public and
private keys (〈e,N〉, 〈d,N〉) (e.g., e = 3) such that ed = 1 mod φ(N). Let l
be the secondary security parameter.

2. Given a security parameter κ′, the n revocation servers {P1, ···,Pn} generate
a pair of public and private keys (〈p, q, g, h, y〉, 〈p, q, g, h, x1, x2〉) where y =
gx1hx2 mod p. This may include the following steps.

a) Generating (p, q, g). This is a standard process.
b) Generating h. The revocation servers run a distributed coin-flipping

protocol to generate r ∈R Z∗
p . Then, it is sufficient to set h = r(p−1)/q

mod p. This is so because if q2 does not divide p− 1 then h is a random
element in the group generated by g.
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c) Generating y. The revocation servers run Joint-Pedersen-RVSS(t)

to share a random pair of (a, b) ∈R Z2
q . Let y = gx1hx2

def
= gahb =

∏
i∈QUAL g

ai0hbi0 mod p, which is publicly known. Note that x1 = a =∑
i∈QUAL ai0 mod q and x2 = b =

∑
i∈QUAL bi0 mod q, that Pi (1 ≤

i ≤ n) holds its shares [x1]i = ai =
∑

j∈QUAL sji mod q and [x2]i = bi =
∑

j∈QUAL s
′
ji mod q, and that g[x1]ih[x2]i =

∏
j∈QUAL g

sjihs′
ji mod p for

1 ≤ i ≤ n are publicly known.

5.2 The Withdrawal Protocol

The withdrawal protocol (between Alice and the bank) goes as follows.
1. Alice chooses ri ∈R Z∗

N , mi, and ki ∈R Zq, computes blinded candidates
Bi = re

i ·H(mi) mod N and encryptions
(αi = gki mod p, βi = hki mod p, γi = H1(mi) · yki mod p)

for 1 ≤ i ≤ l. Then, Alice sends {(Bi, αi, βi, γi)}1≤i≤l to the bank. Here we
assume that the mi’s are signature verification keys without pinning down
any concrete signature scheme; as having said before, a special instantiation
is an one-time signature scheme as in the Chaum-Fiat-Naor scheme.

2. The bank chooses a random subset of l/2 indices R = {ij}1≤ij≤l,1≤j≤l/2,
and sends R to Alice.

3. Alice sends {(ri,mi, ki)}i∈R to the bank.
4. The bank checks the semantical correctness of the responses. To simplify no-

tations, let R = {l/2+1, · · ·, l}. Now, the bank gives Alice
∏l/2

i=1B
1/e
i mod N

and charges her account (for instance) one dollar.
5. Alice obtains the e-coin

C = (m1, · · ·,ml/2;
∏l/2

i=1H(mi)1/e mod N).
Alice re-indexes the m’s in C to be lexicographic on their representation:
H(m1) < H(m2) < · · · < H(ml/2).

5.3 The Payment Protocol

Suppose there is an anonymous channel between a user, Alice, and a merchant,
Bob. The payment protocol has the following steps.
1. Alice sends Bob an e-coin C = (m1, · · ·,ml/2;

∏l/2
i=1H(mi)1/e mod N), and

signatures that can be verified using the verification keys (m1, · · ·,ml/2).
2. Bob verifies the semantical correctness of the e-coin and the signatures.

5.4 The Deposit Protocol

The deposit protocol (between Bob and the bank) goes as follows.
1. Bob sends the bank an e-coin C and the corresponding signatures that can

be verified using the verification keys (m1, · · ·,ml/2).
2. The bank verifies the semantical correctness of the payment. If the e-coin C

has not been deposited before, then it credits Bob’s account; otherwise, the
bank invokes The Owner Revocation Protocol below.



Retrofitting Fairness on the Original RSA-Based E-cash 61

5.5 The Revocation Protocols

We consider two types of revocations: The Coin Revocation Protocol and
The Owner Revocation Protocol.

The Coin Revocation Protocol. This protocol enables the servers to com-
pute the e-coin issued in a given withdrawal session. Given a withdrawal session
with ciphertexts

(αi = gki mod p, βi = hki mod p, γi = H1(mi) · yki mod p)
for 1 ≤ i ≤ l/2, the servers only need to collaboratively decrypt the ciphertexts
and publish the corresponding plaintexts:H1(m1), ···,H1(ml/2). The distributed
decryption operation goes as follows.
1. For 1 ≤ i ≤ l/2, server Pa (1 ≤ a ≤ n) publishes δi,a = α

[x1]a
i β

[x2]a
i mod p.

To ensure robustness, Pa also proves
REP (g, h; g[x1]ah[x2]a) = REP (αi, βi; δi,a)

using a non-interactive or interactive proof (in the latter case the verifier
could be a honest one played by the servers that collaboratively choose a
random challenge).

2. For 1 ≤ i ≤ l/2, the servers compute H1(mi) = γi/δi mod p, where
δi = Double-EXP-Interpolate(δi,1, · · ·, δi,n).

Once the plaintexts H1(m1), · · ·, H1(ml/2) are known, an e-coin with

C = (m′
1, · · ·,m′

l/2;
∏l/2

i=1H(m′
i)

1/e mod N)
matches the withdrawal session if H1(mi) = H1(m′

j) for some 1 ≤ i, j ≤ l/2.

The Owner Revocation Protocol. This protocol enables the servers to
compute the owner of a given e-coin. For this purpose, we let the servers com-
pare a given e-coin, C = (m′

1, · · ·,m′
l/2;

∏l/2
i=1H(m′

i)
1/e mod N), with each can-

didate withdrawal session of publicly known {(αi, βi, γi)}1≤i≤l/2. We say “the
e-coin C matches the withdrawal session” if there exist 1 ≤ i, j ≤ l/2 such that
REP (g, h; y) = REP (αi, βi; γi/H1(m′

j)).
An intuitive solution to the problem of deciding whether a given e-coin

matches a given withdrawal session is to let the servers conduct a distributed
proof REP (g, h; y) = REP (αi, βi; γi/H1(m′

j)). However, this would leak the
plaintext information. To avoid this information leakage, it is natural to inject
randomness into the revocation process. For example, the servers could com-
pute θ = gz mod p, δ = γi/H1(m′

j) mod p, and ∆ = [(αi)z]x1 [(βi)z]x2 mod p
for some z ∈R Zq, and conduct a distributed protocol attempting to prove
DLOG(g, θ) = DLOG(δ, [(αi)z]x1 [(βi)z]x2). While this is reasonable, we find
an even better way to facilitate the task, namely letting the servers compute
and compare δz ?= ∆. Note that δz = ∆ (therefore, the revocation process out-
puts Yes) if and only if REP (g, h; y) = REP (αi, βi; γi/H1(m′

j)) except for a
negligible probability.

Specifically, the following protocol loops for 1 ≤ i ≤ l/2 and 1 ≤ j ≤ l/2, and
may halt when it outputs the first Yes (there are various alternatives depending
on the system management policy that is beyond the scope of this paper). Note
that the protocol, for the sake of clarifying the presentation, is not round-optimal,
but it is easy to see that rounds 3-8 can be merged into 2 rounds.
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1. Define δ = γi/H1(m′
j) mod p.

2. The servers execute Random-GEN(t) to generate θ = gz mod p so that

z
(t+1,n)←→ (z1, · · ·, zn), where θa = gza mod p, 1 ≤ a ≤ n, are publicly known.

3. Server Pa (1 ≤ a ≤ n) broadcasts σa = δza mod p. To ensure robustness, Pa

proves in zero-knowledge DLOG(g, θa) = DLOG(δ, σa).
4. The servers compute σ = EXP-Interpolate(σ1, · · ·, σn).
5. Server Pa (1 ≤ a ≤ n) broadcasts µa = αza

i mod p. To ensure robustness,
Pa proves in zero-knowledge DLOG(g, θa) = DLOG(αi, µa).

6. The servers compute µ = EXP-Interpolate(µ1, · · ·, µn).
7. Server Pa (1 ≤ a ≤ n) broadcasts νa = βza

i mod p. To ensure robustness,
Pa proves in zero-knowledge DLOG(g, θa) = DLOG(βi, νa).

8. The servers compute ν = EXP-Interpolate(ν1, · · ·, νn).
9. Server Pa (1 ≤ a ≤ n) broadcasts∆a = µ[x1]aν[x2]a mod p. To ensure robust-

ness, Pa proves in zero-knowledge REP (g, h;ψa) = REP (µ, ν;∆a), where
ψa = g[x1]ah[x2]a mod p is publicly known.

10. The servers compute ∆ = Double-EXP-Interpolate(∆1, · · ·, ∆n).
11. If ∆ = σ, then the protocol outputs Yes meaning that H1(m′

j) is the plain-
text corresponding to the ciphertext (αi, βi, γi); otherwise, the protocol out-
puts No meaning that H1(m′

j) is not the plaintext corresponding to the
ciphertext (αi, βi, γi).

6 Properties of the Fair Offline RSA E-cash Scheme

Let cfn denote the original Chaum-Fiat-Naor scheme [CFN88], and folc denote
the above fair off-line scheme. As we said before, we focus on unforgeability,
revocability, and anonymity.

6.1 Unforgeability

We reduce the unforgeability of cfn to the unforgeability of folc. Due to space
limitation, we leave formal analysis to the full version of this paper.

6.2 Revocability

Revocability of folc is ensured by the cut-and-choose technique which assures
that one element in the coin structure is decryptable by the authorities. Specif-
ically, as in cfn, the probability that a dishonest user passes the cut-and-choose
verification without presenting any appropriately ciphertext is negligible.

6.3 Anonymity

We consider two types of anonymity. First, no adversary can link a withdrawal
session initiated by a honest user to the corresponding e-coin. To prove this (in
Theorem 1), we need to ensure that The Coin Revocation Protocol does
not leak any significant information about the private key except the plaintext
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(this is proved in Lemma 1), and that The Owner Revocation Protocol

leaks no information about the private key and no information about the corre-
sponding plaintext in the case that (αi, βi, γi) is no encryption of H1(m′

j) (this
is proved in Lemma 2). Second, no adversary can link two e-coins withdrawn by
a honest user (i.e., unlinkability) even if the user is not identified (this is proved
in Theorem 2).

Before we prove the theorems, let us recall that the adversary is static and
t-threshold (namely, it corrupts at most t revocation servers). Without loss of
generality, we assume that P1, · · ·, Pt′ (t′ ≤ t) were corrupted at initialization,
and thus their internal states are known to the adversary.

Lemma 1. Given a ciphertext (α, β, γ) that appears in a withdrawal session.
The Coin Revocation Protocol does not leak any information about
(x1, x2) but the corresponding plaintext H1(m) = γ/αx1βx2 mod p.

Proof. (sketch) We construct a polynomial-time algorithm S to simulate The

Coin Revocation Protocol. Suppose S is given H1(m) and the shares of
(x1, x2) held by the corrupt servers: ([x1]1, [x2]1), · · ·, ([x1]t′ , [x2]t′). Recall that
g[x1]bh[x2]b mod p for 1 ≤ b ≤ n are publicly known. Let δ = γ/H1(m) mod p.

1. S simulates the process that Pb (1 ≤ b ≤ n) publishes
δb = α[x1]bβ[x2]b mod p, which is intended to guarantee δ =
Double-EXP-Interpolate(δ1, · · ·, δn). For this purpose S executes as fol-
lows.
a) S chooses a0 ∈R Zq, computes δ′ = δ/αa0 mod p which can be under-

stood as βa′
0 mod p for some unknown a′

0. Note that δ = αa0βa′
0 mod p.

b) Note that A0
def
= αa0 , f(1)

def
= [x1]1, · · ·, f(t′)

def
= [x1]t′ , f(t′ + 1)

def
=

[x1]∗t′+1 ∈R Zq, · · ·, f(t)
def
= [x1]∗t ∈R Zq uniquely determine a t-degree

polynomial f(η) = a0 + a1η + · · · + atη
t mod q. So, S computes Av =

αav = (A0)λv0 ·∏t′

b=1(α
[x1]b)λvb ·∏t

b=t′+1(α
[x1]∗b )λvb for 1 ≤ v ≤ t, where

the λvb’s are the Lagrange interpolation coefficients. Finally, S computes
α[x1]∗b

def
= αf(b) =

∏t
v=0(Av)bv

for t+ 1 ≤ b ≤ n.

c) Note that A′
0

def
= σ′ = βa′

0 where a′
0 is unknown to S, f ′(1)

def
= [x2]1, · · ·,

f ′(t′)
def
= [x2]t′ , f ′(t′ + 1)

def
= [x2]∗t′+1 ∈R Zq, · · ·, f ′(t)

def
= [x2]∗t ∈R Zq

uniquely determine a t-degree polynomial f ′(η) = a′
0 + a′

1η + · · · +
a′

tη
t mod q. So, S computes A′

v = βa′
v = (A′

0)
λv0 · ∏t′

b=1(β
[x2]b)λvb ·

∏t
b=t′+1(β

[x2]∗b )λvb for 1 ≤ v ≤ t, where the λvb’s are the Lagrange inter-

polation coefficients. Finally, S computes β[x2]∗b
def
= βf ′(b) =

∏t
v=0(A

′
v)bv

for t+ 1 ≤ b ≤ n.
d) For 1 ≤ b ≤ t′, S executes at the adversary’s will (e.g., the adversary may

ask S to deviate from the protocol); for t′ + 1 ≤ b ≤ n, S publishes δb =
α[x1]∗bβ[x2]∗b mod p and proves REP (g, h; g[x1]bh[x2]b) = REP (α, β; δb)
using the corresponding simulator.

2. It is guaranteed that δ = Double-EXP-Interpolate(δ1, · · ·, δn) and thus
H1(m) = γ/δ mod p.
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Lemma 2. Given H1(m′
j) and a ciphertext (αi, βi, γi), The Owner Revoca-

tion Protocol does not leak any information about the secret (x1, x2) except
the bit whether (αi, βi, γi) is an encryption of H1(m′

j). Furthermore, in the case
the process outputs YES, H1(mi) is of course publicly known; in the case the
process outputs NO, no information about H1(mi) = γi/(αi)x1(βi)x2 is leaked.

Proof. (sketch) We construct a polynomial-time algorithm S to simulate The

Owner Revocation Protocol. Specifically, suppose an instance of The

Owner Revocation Protocol outputs θ = gz, δ = γi/H1(m′
j), σ = δz,

µ = (αi)z, ν = (βi)z, and ∆ = µx1νx2 , where either ∆ = σ (i.e., the in-
stance outputs Yes) or ∆ 	= σ (i.e., the instance outputs No). Let H1(mi) =
γi/(αi)x1(βi)x2 . Note that in the case ∆ 	= σ, the leakage of information about
z may result in the leakage of information about the plaintext H1(mi) because
σ/∆ = [H1(mi)/H1(m′

j)]
z. Note also that ([x1]1, [x2]1), · · ·, ([x1]t′ , [x2]t′) are

given to the simulator S. S executes as follows.

1. S computes δ = γi/H1(m′
j) mod p, which is the same as the one given to S.

2. S emulates the execution of Random-GEN(t) to generate θ = gz mod p,
which is given as an input. This is done by calling the simulator in Appendix

A. As a consequence, it is guaranteed that z
(t+1,n)←→ (z1, · · ·, zn), where θb =

gzb mod p for 1 ≤ b ≤ n are publicly known.
3. To simulate the generation of σ = δz, S executes as follows.

a) Note that A∗
0

def
= σ = δa∗

0 where a∗
0

def
= z, f∗(1)

def
= z1, · · ·, f∗(t′)

def
= zt′ ,

f∗(t′ + 1)
def
= z∗

t′+1 ∈R Zq, · · ·, f∗(t)
def
= z∗

t ∈R Zq uniquely determine a
t-degree polynomial f∗(η) = a∗

0 +a∗
1η+ · · ·+a∗

t η
t mod q. So, S computes

A∗
v = δa∗

v = (A∗
0)

λv0 ·∏t′

b=1(δ
zb)λvb ·∏t

b=t′+1(δ
z∗

b )λvb for 1 ≤ v ≤ t, where
the λvb’s are the Lagrange interpolation coefficients. Finally, S computes
δz∗

b
def
= δf∗(b) =

∏t
v=0(A

∗
v)bv

for t+ 1 ≤ b ≤ n.
b) For 1 ≤ b ≤ t′, S emulates Pb at the adversary’s will; for t′ + 1 ≤

b ≤ n, S emulates Pb by broadcasting σb = δz∗
b mod p and proving

DLOG(g, θb) = DLOG(δ, σb) using the corresponding simulator.
4. It is guaranteed that σ = δz = EXP-Interpolate(σ1, · · ·, σn).
5. To simulate the generation of µ = αz

i , S executes as follows.

a) Note that A∗
0

def
= µ = α

a∗
0

i where a∗
0

def
= z, f∗(1)

def
= z1, · · ·, f∗(t′)

def
= zt′ ,

f∗(t′ + 1)
def
= z∗

t′+1 ∈R Zq, · · ·, f∗(t)
def
= z∗

t ∈R Zq uniquely determine a
t-degree polynomial f∗(η) = a∗

0 +a∗
1η+ · · ·+a∗

t η
t mod q. So, S computes

A∗
v = α

a∗
v

i = (A∗
0)

λv0 · ∏t′

b=1(α
zb
i )λvb · ∏t

b=t′+1(α
z∗

b
i )λvb for 1 ≤ v ≤ t,

where the λvb’s are the Lagrange interpolation coefficients. Finally, S
computes αz∗

b
i

def
= α

f∗(b)
i =

∏t
v=0(A

∗
v)bv

for t+ 1 ≤ b ≤ n.
b) For 1 ≤ b ≤ t′, S emulates Pb at the adversary’s will; for t′ + 1 ≤

b ≤ n, S emulates Pb by broadcasting µb = α
z∗

b
i mod p and proving

DLOG(g, θb) = DLOG(αi, µb) using the corresponding simulator.
6. It is guaranteed that µ = αz

i = EXP-Interpolate(µ1, · · ·, µn).
7. To simulate the generation of ν = βz

i , S executes as follows.
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a) Note that A∗
0

def
= ν = β

a∗
0

i where a∗
0

def
= z, f∗(1)

def
= z1, · · ·, f∗(t′)

def
= zt′ ,

f∗(t′ + 1)
def
= z∗

t′+1 ∈R Zq, · · ·, f∗(t)
def
= z∗

t ∈R Zq uniquely determine a
t-degree polynomial f∗(η) = a∗

0 +a∗
1η+ · · ·+a∗

t η
t mod q. So, S computes

A∗
v = β

a∗
v

i = (A∗
0)

λv0 ·∏t′

b=1(β
zb
i )λvb ·∏t

b=t′+1(β
z∗

b
i )λvb for 1 ≤ v ≤ t, where

the λvb’s are the Lagrange interpolation coefficients. Finally, S computes
β

z∗
b

i

def
= β

f∗(b)
i =

∏t
v=0(A

∗
v)bv

for t+ 1 ≤ b ≤ n.
b) For 1 ≤ b ≤ t′, S emulates Pb at the adversary’s will; for t′ + 1 ≤

b ≤ n, S emulates Pb by broadcasting νb = β
z∗

b
i mod p and proving

DLOG(g, θb) = DLOG(βi, νb) using the corresponding simulator.
8. It is guaranteed that ν = βz

i = EXP-Interpolate(ν1, · · ·, νn).
9. In order to simulate the generation of ∆ = µx1νx2 , S executes as follows.

a) S chooses a0 ∈R Zq, computes σ′ = ∆/µa0 mod p which can be under-
stood as νa′

0 mod p for some unknown a′
0. Note that ∆ = µa0νa′

0 mod p.
b) Note that A0

def
= µa0 , f(1)

def
= [x1]1, · · ·, f(t′)

def
= [x1]t′ , f(t′ + 1)

def
=

[x1]∗t′+1 ∈R Zq, · · ·, f(t)
def
= [x1]∗t ∈R Zq uniquely determine a t-degree

polynomial f(η) = a0 + a1η + · · · + atη
t mod q. So, S computes Av =

µav = (A0)λv0 ·∏t′

b=1(µ
[x1]b)λvb ·∏t

b=t′+1(µ
[x1]∗b )λvb for 1 ≤ v ≤ t, where

the λvb’s are the Lagrange interpolation coefficients. Finally, S computes
µ[x1]∗b

def
= µf(b) =

∏t
v=0(Av)bv

for t+ 1 ≤ b ≤ n.

c) Note that A′
0

def
= σ′ = νa′

0 where a′
0 is unknown to S, f ′(1)

def
= [x2]1, · · ·,

f ′(t′)
def
= [x2]t′ , f ′(t′ + 1)

def
= [x2]∗t′+1 ∈R Zq, · · ·, f ′(t)

def
= [x2]∗t ∈R Zq

uniquely determine a t-degree polynomial f ′(η) = a′
0 + a′

1η + · · · +
a′

tη
t mod q. So, S computes A′

v = νa′
v = (A′

0)
λv0 · ∏t′

b=1(ν
[x2]b)λvb ·

∏t
b=t′+1(ν

[x2]∗b )λvb for 1 ≤ v ≤ t, where the λvb’s are the Lagrange inter-

polation coefficients. Finally, S computes ν[x2]∗b
def
= νf ′(b) =

∏t
v=0(A

′
v)bv

for t+ 1 ≤ b ≤ n.
d) For 1 ≤ b ≤ t′, S executes according to the adversary’s requirements

(e.g., the adversary may ask S to deviate from the protocol); for t′ +1 ≤
b ≤ n, S publishes ∆b = µ[x1]∗b ν[x2]∗b and proves REP (g, h; g[x1]bh[x2]b) =
REP (µ, ν;µ[x1]∗b ν[x2]∗b ) using the corresponding simulator.

10. It is guaranteed that ∆ = Double-EXP-Interpolate(∆1, · · ·, ∆n).
11. If ∆ = σ, then S outputs Yes; otherwise, S outputs No.

Theorem 1. Suppose the DDH assumption holds. Then, no t-threshold adver-
sary, who is given a ciphertext (α, β, γ) that appears in a withdrawal session ini-
tiated by a honest user, and H1(m), is able to correctly decide whether (α, β, γ)
is an encryption of H1(m) with non-negligible advantage over a random guess.

The proof will be given in the full version of this paper.

Theorem 2. (unlinkability) folc is unlinkable meaning that no t-threshold ad-
versary can link two e-coins to the same honest user (although the user’s identity
is unknown).
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Proof. (sketch) This is so because (1) all the mi’s chosen by the honest users
are independently and uniformly distributed, and (2) Theorem 1 showed that
folc, compared with cfn, does not leak any computational information about the
secret (x1, x2) or the H1(m)’s of the honest users’.

7 Discussions and Extensions

On the Efficiency of the Fair Off-Line RSA E-Cash Scheme. The
penalty for fairness is the computational overhead at the user side, namely a user
needs to compute 3l exponentiations for each e-coin (but all the exponentiations
are pre-computable). The communication overhead at the user side is almost
the same as in the Chaum-Fiat-Naor scheme. The time complexity of deciding
whether an e-coin matches a withdrawal session is O(l2) comparison operations;
this may be no real concern because that the servers deployed in threshold
cryptosystems are typically powerful, and that the technique developed in [JM99]
could be adopted to improve the revocation efficiency.
On Anonymity against “Suicide” Attacks. In the analysis of Section 6, we
have taken into consideration the attack that the adversary attempts to distin-
guish a simulation from the real-world system by invoking the revocation process.
Here we take a further step in investigating the possibility that the adversary
attempts to break the anonymity of a honest user by conducting the following
“suicide” attack. Suppose an adversary intercepts (from a withdrawal session
initiated by a honest user) a ciphertext (α = gk mod p, β = hk mod p, γ =
H1(m) ·yk mod p) that remains un-opened after the cut-and-choose verification.
Furthermore, the adversary initiates a withdrawal session into which it embeds
(α·gk′

mod p, β ·hk′
mod p, γ ·yk′

mod p) as the ith component ciphertext, where
i ∈R {1, · · ·, l}. Note in this case the adversary passes the cut-and-choose verifi-
cation with probability 0.5, which is enough. Then, the adversary commits some
suspicious activities so that The Coin Revocation Protocol will be invoked
and H1(m) will be publicly known. As a consequence, the adversary is able to
associate the honest user’s payment with her withdrawal. Note that this issue is
typically ignored in e-cash protocols, although such a “suicide” attack against a
honest user’s anonymity is expensive because the adversary, whose account has
been charged, can not spend that e-coin.

One may suggest that the above “suicide” attack can be blocked by making
the communication channel in the withdrawal protocol confidential (e.g., us-
ing an appropriate cryptosystem). Clearly, a simple-minded encryption so that
each candidate (Bi, αi, βi, γi) is individually encrypted using (for example) the
bank’s public key does not prevent an adversary from applying the cut-and-paste
technique. Even more involved protocol (e.g., each withdrawal session could be
protected by deploying a fresh session key generated using an authenticated key
exchange protocol) does not completely solve the problem because the model,
which reflects the well-known security principle called separation-of-duty, im-
plies that the bank is not necessarily trusted in preserving the users’ anonymity.
Clearly, it does not help us to let the bank distribute the decryption capabili-
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ties (corresponding to the fresh session keys) among a set of servers, since these
servers are under the control of the bank.

In summary, the powerful but expensive “suicide” attack, which perhaps in-
volves the bank that is not necessarily trusted in preserving the users’ anonymity,
is able (in some extreme cases as above) to compromise the anonymity of some
honest users in the fair off-line RSA e-cash scheme, but anonymity of most honest
users will be preserved.

8 Conclusion

We showed how to incorporate fairness into the Chaum-Fiat-Naor e-cash scheme
while preserving their system architecture. The disadvantage of our scheme is
the computational overhead at the user side; this may be solvable by deploying
certain RSA-based (instead of DLOG-based) cryptosystem.

Acknowledgement. We thank the anonymous reviewers for helpful comments.
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A The Simulator of Random-Gen(t)

This algorithm appeared in [GJKR99]. Given θ = gz mod p, the simulator emu-
lates the generation of θ in the presence of an adversary that corrupts no more
than t servers. Denote by B the set of servers corrupted by the adversary, and
by G the set of honest server (run by the simulator). Without loss of generality,
let B = {1, · · ·, t′} and G = {t′ + 1, · · ·, n}, where t′ ≤ t.
Input: θ = gz mod p and parameters (p, q, g, h).
The simulation goes as follows.

1. The simulator executes Joint-Pedersen-RVSS(t) on behalf of the servers
in G.

2. The simulator emulates the extraction of θ = gz.
– Compute Ail = gzil mod p for i ∈ QUAL\{n} and 0 ≤ l ≤ t.
– Set A∗

n0 = θ/
∏

i∈QUAL\{n}Ai0 mod p.
– Assign s∗

nj = snj for 1 ≤ j ≤ t.
– Compute A∗

nl = (A∗
n0)

λl0 ·∏t
i=1(g

s∗
ni)λli mod p for 1 ≤ l ≤ t, where the

λli’s are the Lagrange interpolation coefficients.
a) Broadcast {Ail}0≤l≤t for i ∈ G\{n}, and {A∗

nl}0≤l≤t.
b) Check the values {Ail}i∈B,0≤l≤t using the Feldman verification

equation. If the verification fails for some i ∈ B, j ∈ G, broadcast a
complaint (sij , s

′
ij).

c) If necessary, reconstruct the polynomial fi and publish ai0 and θi =
gai0 mod p, where i ∈ B.
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