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ABSTRACT
Modeling cybersecurity risks is an important, yet challenging, prob-
lem. In this paper, we initiate the study of modeling multivariate
cybersecurity risks. We develop the first statistical approach, which is
centered at a Copula-GARCHmodel that uses vine copulas to model
the multivariate dependence exhibited by real-world cyber attack
data. We find that ignoring the due multivariate dependence causes
a severe underestimation of cybersecurity risks. Both simulation and
empirical studies show that the proposed approach leads to accurate
predictions of multivariate cybersecurity risks.
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1. Introduction andmotivation

According to the eighth Emerging Risks Survey conducted by the Society of Actuaries in
2016, cybersecurity threat has become the biggest emerging risk. This is witnessed bymany
severe cybersecurity incidents. For example, in February 2016, the Society for Worldwide
Interbank Financial Telecommunication (SWIFT) network was hacked, which caused the
theft of $101 million from Bangladesh’s Central Bank; in December 2015, a coordinated
cyber attack against several regional distribution power companies caused power outages
in Western Ukraine; in June 2015, the Japan Pension Service system was hacked, which
caused the breach of 1.25 million personal records. These many cybersecurity incidents
can be attributed to the fact that cyberspace is difficult to secure, which can be further
attributed to the ‘asymmetry’ that an attacker can succeed by exploiting a single vulner-
ability, but the defender has to block all vulnerabilities in order to protect a system from
attacks. In other words, cyber systems have a very large ‘attack surface’, especially in the
present era of cyber physical systems and Internet of Things (IoT) because many low-end
physical devices cannot afford, or even infeasible (e.g. due to the availability of very lim-
ited computer memory resources on the device), to employ advanced but costly defense
mechanisms. As a result, the United States Department of Homeland Security has made
a systematic research and development plan for protecting critical infrastructures from
cyber attacks [13]. In contrast to the fact that many studies have been conducted to protect
critical infrastructures from natural disasters, such as transportation networks [20], eco-
nomic systems [43] and petrochemical systems [46], our capability in quantifying cyber
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Figure 1. Cybersecurity risk against n servers of an enterprise.

risks is very limited. Among the many technical difficulties, one is the lack of ‘good’ cyber-
security risk metrics [9,40] and the other is the complexity that is encountered in dealing
systemic cybersecurity risks as well as their emergent behaviors [49]. This very unsatisfac-
tory situation calls for more research into the quantitative management of cybersecurity
risks.

In this paper, we investigate how to model multivariate cybersecurity risks, which are
manifested by multivariate dependent cyber attacks. Figure 1 illustrates the problem of
multivariate dependence between the time series of cyber compromise events. Specifically,
consider an enterprise of n servers (or computers, or virtual machines in a cloud) that
store some secret data. Suppose there is a single server that is compromised at time t1, t2,
t4, and t6; there are two servers that are compromised at time t3; there are four servers that
are compromised at time t5. Whenever a server is compromised, a loss is incurred (e.g.
the cost due to the compromise of the data in question, the recovery of the compromised
data). In the real world, a compromised server can be ‘cleaned up’ by the defender, but the
cleaned computer may get compromised again. For the purpose of assessing cybersecurity
risks, we can record the compromise events and the losses they incur.

The research objective is to model the multivariate dependence among cybersecurity
risks, and further predict the incoming attacks and the losses they incur. This predic-
tion capability would help the enterprise to achieve proactive defense against the antic-
ipated attacks [8,41,48,50–52]. This prediction capability is also useful in cybersecurity
risk management via cybersecurity insurance because modeling cybersecurity risks is
the first step towards determining the insurance premium, which is a challenging prob-
lem [6,18,25,30,35,48]. These real-world needs justify the importance of modeling the
multivariate dependence between cybersecurity risks.

Recently, researchers have started investigating the problem of multivariate cybersecu-
rity risks. From the perspectives of actuarial science and insurance, Böhme and Kataria
[6] used the Beta-Binomial and one-factor latent risk model to describe the correlation
between cybersecurity risks.Mukhopadhyay et al. [35] proposed a BayesianBeliefNetwork
approach to modeling cybersecurity risks, and used the multivariate Gaussian copula to
model the joint distribution and conditional distribution of each node in a network.Herath
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and Herath [25] proposed a copula-based actuarial model for pricing cybersecurity risks
while considering three risk variables (i.e. the occurrence of an event, the time of payment,
and the amount of payment). One may refer to Kosub [30] and Eling and Schnell [18] for
comprehensive reviews on themodeling andmanagement of cybersecurity risks. From the
perspective of cybersecurity, Xu et al. [48] proposed a vine copula approach for modeling
the dependence between the number of cyber attacks and the number of attacked com-
puters. They discussed how to predict the effectiveness of a cyber defense early-warning
mechanism.

Orthogonal to the focus of the present paper, there are studies that used statistical meth-
ods for detecting cyber attacks. For example, Denning [12] used statistical methods to
detect attacks and introduced the concept of intrusion detection. Markou and Singh [33]
provided a comprehensive review of intrusion detection based on statistical approaches,
including Gaussian mixture models and Hidden Markov models. Neil et al. [36] used a
scan statistic approach for intrusion detection purposes. In addition, statistical methods
have been used to model the evolution of cyber threats or cybersecurity posture. Ishida
et al. [26] proposed a Bayesian method for predicting the increase or decrease of attacks.
Hidden Markov models have also been used to predict the increase or decrease of Bot
agents [29]. Zhan et al. [50] proposed a FARIMA model to predict cyber attacks when
the data exhibits the long-range dependence. This problem was further studied in [52] by
using FARIMA+GARCH models for more accurate predictions. Peng et al. [41] studied
themodeling and prediction of extreme cyber attack rates viamarked point processeswhile
using the Value-at-Risk (VaR) to measure the intensity of cyber attacks. One may refer to
[21] for a survey on some computational techniques that have been used for predicting
cyber attacks.

This paper aims to develop a new statistical model for describing multivariate cyber-
security risks. Specifically, we propose using the vine copula, which was first introduced
in Bedford and Cooke [5], to model multivariate cybersecurity risks. Because of its flex-
ibility and capability in estimating a large number of parameters, the vine copula has
been widely used inmany application settings, including econometrics, finance, insurance,
weather [16,27,31]. We propose using the vine copula to model multivariate cybersecu-
rity risks because of the following: (i) Flexibility. Traditional approaches to modeling a
high-dimensional dependence are to use the multivariate Gaussian or t copulas because
they are mathematically tractable. However, these models are restrictive in the high-
dimensional settings. In contrast, vine copulas are more flexible in the high-dimensional
settings because they can accommodate different dependence structures between differ-
ent pairs of variables [16,27,31]. (ii) Efficiency. In high-dimensional setting, computation
is an important factor in practice and can be challenging even when considering Gaussian
or t copulas with unstructured covariances. In contrast, the truncation technique of vine
copula can efficiently handle the computation in the high-dimensional settings [7].

Our research is different from the aforementioned literature: (i) The proposed vine
copula approach aims to efficiently model the high-dimensional dependence between
cybersecurity risks. In our empirical study, the number of dimensions is 69. In contrast,
previous studies investigated low-dimensional cases. For example, most previous studies
on cybersecurity risks [41,50,52] focused on one-dimensional cybersecurity risks, and the
work [48], which is closely related to the present paper, focused on the four-dimensional
dependence. (ii) We introduce a triggering mechanism to model cyber attack losses in the
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simulation study, meaning that a random loss occurs whenever the number of attacks (per
time unit) exceeds a certain threshold. Thismechanism reflects that an attackermay have to
trymultiple times before successfully penetrating into a system, andmay be of independent
value.

The rest of the paper is organized as follows. In Section 2,we briefly review the concept of
the vine copula. In Section 3, we describe the statistical approach for analyzingmultivariate
cybersecurity risks, and present some simulation studies. In Section 4, we use the proposed
statistical model to analyze a real-world cyber attack dataset, and evaluate both the in-
sample and out-of-sample performances. In Section 5, we conclude the paper and discuss
future research directions.

2. Vine copula

Copula is an effective and popular tool for modeling high-dimensional dependence. A d-
dimensional copula is a cumulative distribution function (cdf) with uniform marginals in
[0, 1]. Specifically, letX1, . . . ,Xd be continuous random variables with univariate marginal
distributions F1, . . . , Fd, respectively. Consider their joint cdf

F(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

and a copula C that is defined as the joint cdf of the random vector (F1(X1), . . . , Fd(Xd)).
When the Fi’s are continuous, Sklar’s theorem [44] says that copulaC is unique and satisfies

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

The joint density function can be represented as

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

i=1
fi(xi),

where c(u1, . . . , un) is the d-dimensional copula density function, and fi is the correspond-
ing marginal density function for Xi for i = 1, . . . , d.

In the literature, many dependence structures have been proposed [27]. A very attrac-
tive and popular dependence structure is the vine copula, which offers a great deal of
flexibility in modeling dependence, including various tail dependences and asymmetric
dependences.Moreover, themultivariate vine copula is computational tractable because its
density can be factored in terms of bivariate linking copulas and lower-dimensional mar-
gins. In general, a d-dimensional vine copula is constructed bymixing d(d − 1)/2 bivariate
linking copulas on a tree. In what follows, we define regular vine (R-vine) with notations
following [16].

Definition 2.1 ([5,16]): V = (T1, . . . ,Td) on d elements is called an R-vine if:

(a) T1 is the first tree (level 1) with node set N1 = {1, . . . , d} and edge set E1.
(b) For i = 2, . . . , d − 1, the edge set Ei−1 is the node set of tree Ti.
(c) (Proximity condition) For tree Ti, i = 2, . . . , d − 1, if two nodes in Ei−1 are connected

by an edge in Ei, then these two nodes as edges in Ti−1 share the same node in Ei.
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Definition 2.2: The following three sets will be used to study properties of R-vines
[5,16].

(a) The complete union set of ei ∈ Ei is defined as

Uei = {d ∈ N1 | ∃ej ∈ Ej, j = 1, . . . , i − 1, with d ∈ e1 ∈ . . . ∈ ei} ⊂ N1.

That is, the complete union of an edge is a set of all indices that this edge contains.
(b) For an edge ei = {a, b} ∈ Ei, the conditioning set of edge ei is defined asDei = Ua ∩ Ub.
(c) For an edge ei, the conditioned sets of ei are defined asCei,a = Ua\Dei , Cei,b = Ub\Dei .

Let (F,V ,B) be a vine copula specification, where F = (F1, . . . , Fd) is a vector of con-
tinuous invertible marginal distribution functions, and B = {Be | i = 1, . . . , d − 1; e ∈ Ei}
is a set of copulas with Be being a pair-copula. There is a unique distribution that realizes
this vine copula specification with density

f1...d(x) =
d∏

k=1

fk(xk)
d−1∏
i=1

∏
e∈Ei

cCe,a,Ce,b |De(FCe,a|De(xCe,a | xDe), FCe,b|De(xCe,b | xDe)),

where x = (x1, . . . , xd), e = {a, b}, xDe = {xi|i ∈ De}, and fi is the density function of Fi
for i = 1, . . . , d. Moreover, cCe,a,Ce,b|De represents the bivariate copula density for edge e =
{a, b} [16].

Twowell-known subclasses of R-vines are C-vines (canonical vines) with star structures
in their tree sequence, and D-vines (drawable vines) with path structures [1,5]. In fact, the
class of R-vine distributions is much larger andmore flexible. Since the information of vine
is very large, Morales-Nápoles [34] suggested using a lower triangular M matrix to store
the information of R-vines.

Definition 2.3 ([16,34]): For i = 1, . . . , d − 1 and k = i + 1, . . . , d − 1, a lower triangular
matrixM = (mij)i,j=1...d is an R-vine matrix if there exist j ∈ {i + 1, . . . , d − 1} such that

(mk,i, {mk+1,i, . . . ,md,i}) ∈ BM(j) or ∈ B̃M(j),

where

BM(i) = {(mi,i,D) | k = i + 1, . . . , d; D = {mk,i, . . . ,md,i}},
B̃M(i) = {(mk,i,D) | k = i + 1, . . . , d; D = {mi,i} ∪ {mk+1,i, . . . ,md,i}}

for i = 1, . . . , d − 1.

WhenM is fixed, the density of R-vine copula can be rewritten as

f1,...,d(x) =
[ d∏
k=1

fk(xk)

]⎡⎣ 1∏
j=d−1

j+1∏
i=d

cmj,j,mi,j|mi+1,j,...,md,j(Fmj,j|mi+1,j,...,md,j , Fmi,j|mi+1,j,...,md,j)

⎤⎦ ,

where Fi|i1,...,in � F(xi | xi1 , . . . , xin).
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Dißmann et al. [16] developed a framework for model selection and estimation based
on R-vine copulas. In our empirical study, we will use the truncated R-vine copula [7]. An
R-vine copula is called truncated if all pair-copulas in higher order trees are set to be bivari-
ate independence copulas. Let tRV(K) denote a truncated R-vine copula at level K and
θ tRV(K) = {θ e1,e2|De | e ∈ Ei, i = 1, . . . ,K} be the pair-copula parameters, where θ e1,e2|De

are the parameters of the pair copula density ce1,e2|De . The copula density of a level-K
truncated R-vine copula can be written as

ctRV(K)(u | θ tRV(K)) =
K∏
i=1

∏
e∈Ei

ce1,e2|De(F(ue1 | uDe), F(ue2 | uDe)), (1)

where u = (u1, . . . , ud) ∈ [0, 1]d. Please refer to [7] for more details of truncated R-
vine copulas. For more and comprehensive discussions of vine copulas, please refer to
[1,5,16,27,31].

3. Modelingmultivariate cybersecurity risks

3.1. The vine copula approach tomodeling high-dimensional cybersecurity risks

In this section, we propose a vine copula approach to modeling multivariate cybersecu-
rity risks. As mentioned in the Introduction, suppose an enterprise has n servers, which
respectively receive X1,t , . . . ,Xn,t attacks during the tth time interval; that is, the ith server
is attacked forXi,t times during the tth time interval, where t = 1, . . . ,N. In the real world,
n can be large, meaning that the number of dimensions of cybersecurity risks is high. Fur-
ther, the dependence among cybersecurity risks can be nonlinear. This motivates us to use
the following statistical approach for analyzing cybersecurity risks, which has three steps.

Step 1: Modeling marginal processes. The first step is to model the attacks against indi-
vidual servers, namely the marginal processes. The marginal model for the attack rate (i.e.
the number of attack per time interval) can be specified as

Xi,t = μi,t + εi,t ,

where μi,t is the mean function,and εi,t is the error term for i = 1, . . . , n and t = 1, . . . ,N.
Our preliminary analysis shows that the ARMA+GARCHprocess canmodel themarginal
processes, that is,

μi,t = μi +
p∑

k=1

φkXi,t−k +
q∑

l=1

θlεi,t−l and εi,t = σi,tZi,

where p is the AR order, q is the MA order, and Zi is the innovations that are indepen-
dent and identically distributed with density gi(·|ϑ) and ϑ representing parameters of the
density function.

Step 2: Modeling the dependence structure. The second step is to model the high-
dimensional dependence. The joint distribution of (Z1, . . . ,Zn) can be written as

Fz(z;ϑ ,�) = C(F1(z1), . . . , Fn(zn);ϑ ,�), (2)

where � denotes the vector of parameters of an n-dimensional vine copula, and Fi is the
marginal distribution of Zi for i = 1, . . . , n. As mentioned above, we propose using the
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R-vine copula to model the dependence of cybersecurity risks, which uses bivariate copu-
las as building-blocks. Since the computational complexity increases exponentially as the
number of dimensions of the dependence, it is infeasible to model all of the tree structures.
Since the correlation between two nodes decreases along with the increasing of the tree
level, the truncated vine copula is a good choice for our data [7,16].

In order to select the truncation level according to the dataset, we use the Algorithm 1
described in [7], which is based on the Vuong test [47]. The algorithm starts from K=1,
which fits a truncated vine copula, and increases K one-by-one to assess whether a more
complicated model should be used according to the Vuong test. In this algorithm, the pair
copulas are also selected for the truncated vine.

Step 3: Estimating model parameters. The joint log-likelihood function of the model can
be written as

L(ϑ ,�) =
N∑
t=1

[
log c

(
F1

(
y1,t − μ1,t

σ1,t

)
, . . . , Fn

(
yn,t − μn,t

σn,t

)
;ϑ ,�

)

−
n∑

i=1
log(σi,t) +

n∑
i=1

log
(
gi

(
yi,t − μi,t

σi,t
;ϑ

))]
, (3)

where c(·) is the copula density of C(·). Since the number of parameters is very large for
our model, for the joint log-likelihood function L(ϑ ,�), we propose using the Inference
Function of Margins (IFM) method for estimating the model parameters [27]. The IFM
method involves two steps: estimating the parameters of the marginal time series models,
and then estimating the parameters of the copula(s) by fixing the parameters obtained in
the previous step. The IFM method is a widely used approach in the literature. Moreover,
it has been proved that under some regularity conditions, the IFM estimators are consis-
tent and asymptotically normal [27]. Therefore, for modeling cybersecurity risks, we first
estimate the parameters for the marginal models, thta is, ARMA+GARCH, by using max-
imum likelihood approach, and thenmodel the dependence among risks by using the vine
copula discussed in Step 2.

3.2. Simulation study

Now we study the proposed statistical approach based on the Monte Carlo simulation.
Specifically, we discuss the out-of-sample performances of our model, and study how the
dependence would affect the assessment of the cyber losses. This study would shed light on
the consequence of ignoring the dependence among cybersecurity risks. For this purpose,
we first introduce a triggering mechanism for simulating cyber losses, which may have an
independent interest in actuarial science and risk management.

Recall that an enterprise has n servers, and the ith server is compromised when the
number of attacks against it is above a threshold τi. This is a reasonable assumption because
it reflects the number of attacks that are needed in order to compromise a server. Consider
the following triggering vector

(I(X1,t > τ1), . . . , I(Xn,t > τn)),

where I(·) is the indicator function. Suppose the compromise of a server imposes a ran-
dom loss Yi, and the compromise of a server during the tth time interval is detected and
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recovered at the end of the tth time interval (equivalently, the beginning of the (t + 1)th
time interval). This can be achieved in practice by using proactive defense as discussed in,
for example, [23,45]. The random loss at the tth time interval can be represented as

S(t) =
n∑

i=1
Si(t) =

n∑
i=1

Yi · I(Xi,t > τi),

where Si(t) represents the random loss at time t for server i, i = 1, . . . , n. We suppose that
the loss Yi follows a log-normal distribution, which is because there is empirical evidence
showing that the loss of data breach follows a log-normal distribution [17]. In what follows,
we discuss the performance of the proposed approach in different scenarios.

3.2.1. Simulatingmultivariate cyber losses
Now we discuss the simulation of multivariate cyber losses under the triggering mecha-
nism. We are particularly interested in examining the dependence effect on the prediction
performance of the proposed model. For this purpose, the experiments are set up as
follows.

We generate three 10-dimensional attack processes with size 1500 and the follow-
ing dependence structures: (i) Vine copula; (ii) Multivariate Gaussian copula; and
(iii) Multivariate t copula. The marginal attack processes Xi,t ’s are generated from the
AR(1)+GARCH(1,1)model with skewed Student-t innovations. The reason for us to select
thismodel is that, based on the empirical study in Section 4, the real attack processes can be
captured by theAR(1)+GARCH(1,1)model. It is worthmentioning that theAR+GARCH
process is widely used in the literature for modeling time series in practice; see, for exam-
ple, [24,37,48]. Please refer to the Appendix for the details of generating the dependent
multivariate attack processes with those dependence structures.

The datasets with the vine, multivariate Gaussian, and multivariate t copula structures
are denoted by attVC, attGC and attTC, respectively.

For the loss triggering mechanism, we assume that τi = 12 for 1 ≤ i ≤ 10. We further
assume that the loss Yi has the following log-normal distribution,

log(Yi) ∼ N(μ, σ 2) (4)

withμ = 7.894 and σ = .3715. To simulate the cyber losses incurred bymultivariate attack
process, a random log-normal loss with distribution in Equation (4) is generated when the
number of attacks per unit exceeds 12 for each attack process.

Figure 2 plots the simulated total loss s(t) of the enterprise during a period of time and
corresponding to a specific dependence structure between multivariate cyber attack pro-
cesses. It is interesting to observe that there are clusters and extreme values in the simulated
data. These phenomena of clustering and extreme values are often observed in the cyber
risks [52].

In the following, we examine the prediction performance of the proposed approach in
different scenarios. Specifically, we study the model performances when the dependence
structure is correctly specified as vine copula, and discuss the consequence of ignoring
the dependence between multivariate cyber attack processes. Furthermore, we discuss the
model performance when the dependence structure is misspecified as vine copula but the
true dependence structures are the multivariate Gaussian and t copula structures.
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(a) Multivariate Gaussian copula (b) Multivariate t copula (c) Vine copula

Figure 2. Simulated total loss s(t) of the enterprise during a period of time and corresponding to a
specific dependence structure between multivariate cyber attack processes.

3.2.2. Performance evaluation
For evaluation purposes, the generated attack datasets (attGC, attVC and attTC) are split into
in-sample and out-of-sample parts with sample sizes 1000 and 500, respectively.

We perform the three steps described in Section 3.1 to estimate the parameters of the
proposed model, and the log-likelihood function is calculated based on Equation (3). For
the marginal processes, we use ARMA(p, q)+GARCH(1,1) with innovations from dif-
ferent distributions including the normal, Student-t, skewed normal, skewed Student-t,
and generalized error distributions. The p and q are allowed to vary from 0 to 5, respec-
tively. The AIC criterion is used for identifying the orders of p and q, and the simpler
model is preferred when the AICs of two models are close to each. It is found that
AR(1)+GARCH(1,1) model with the skewed Student-t innovation is selected for all of
the marginal attack processes. The standardized residuals of the marginal models are used
to estimate the dependence structure between the 10 attack processes. For selecting the
vine copula structure, as suggested in [16], we use a sequential approach based on the
maximum spanning tree algorithm, which has been implemented in the state-of-the-art
R package VineCopula. We use this package to fit the standardized residuals and select the
vine copula corresponding to Equation (3).

In order to evaluate the out-of-sample performance of the proposed approach, we use
the risk measure of VaR. Specifically, the VaR at level α is defined as

VaRα(t) = inf{l : P(S(t) ≤ l) ≥ α},

where S(t) is the cumulative loss and 0 < α < 1. The violation based on VaRα is defined
as

Iα(t) =
{
1, s(t) > VaRα(t),
0, otherwise,

where s(t) is the observed cybersecurity loss and VaRα(t) is the predicted VaR values of
the loss. For example, VaR.95(t) describes that there is only 5% chance that the observed
attack loss St would exceed the predicted value of VaR.95(t). When this happens, we say a
violation occurs.

In order to assess the accuracy of the prediction, we use three widely used tests [10].
The first test is the unconditional coverage test (LRuc ), which evaluates whether or not the
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fraction of violations obtained from the model is significantly different from the theoreti-
cal one. The second test measures the independence of violations (LRind ), where the null
hypothesis is that the present violation has no effect on future violations. The third test,
called the conditional coverage test (LRcc ), is a combination of the preceding two. In what
follows, we discuss how to apply these tests for prediction purposes.

We use Algorithm 1 to compute the VaRα(t)’s of the total loss and the number of
violations based on the proposed model, where α varies from .91 to .98.

Algorithm 1 Algorithm for rolling prediction of the VaRα of cyber attack losses
Input: Multivariate historical time series data {(i, xi,t , s(t))|i = 1, . . . , d; t = 1, . . . ,m + n};
in-sample dataset {(i, xi,t)|i = 1, . . . , d; t = 1, . . . ,m}; out-of-sample dataset
{(i, xi,t)|i = 1, . . . , d; t = m + 1, . . . , n}; α; loss triggering threshold τ = 12.

1: for t = m + 1, . . . , n do
2: Estimate the Copula-GARCH model based on {(i, xi,s)|s = 1, . . . , t − 1} by using

steps 1-3 in Section 3.1, and predict the next mean μ̂i and standard error σ̂i,t ;
3: Based on the estimated vine copula, simulate 5000 d-dimensional copula samples

u(k)
i,t , i = 1, . . . , n by using the algorithm in 1, k = 1, . . . , 5000;

4: Convert the simulated dependent samples u(k)
i,t ’s into the z

(k)
i,t ’s by using the inverse

of the estimated Student-t distribution, k = 1, . . . , 5000;
5: Compute the predicted 5000 d-dimensional time series attack data x(k)

i,t by using
Equation (A5), k = 1, . . . , 5000;

6: if x(k)
i,t > τ then

7: Generate a log-normal random loss y(k)
i,t based on Equation (4);

8: else
9: The random loss is y(k)

i,t = 0;
10: end if
11: Calculate the total loss s(k)(t) = ∑d

i=1 y
(k)
i,t , k = 1, . . . , 5000;

12: return VaRα(t) based on predicted 5000 total losses.
13: if The observed total loss s(t) > VaRα(t); then
14: An violation occurs;
15: return 1.
16: else
17: return 0.
18: end if
19: end for
Output: The VaRα(t)’s of the total loss, and the number of violations.

Table 1 reports the prediction results for the attVC dataset. Note that in this case, the
dependence structure is correctly specified as the vine copula. For comparison purposes,
we also list the testing results based on the benchmark model, that is, the independence
model. We observe that the prediction performances are very satisfactory based on the
proposed vine model, while the benchmark model performs poorly. In fact, none of the
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Table 1. Assessing prediction performance based on the simulated out-of-sample data for attVC.

α Obs. Exp. LRuc LRind LRcc Var

Vine model
.91 47 45 .756 .180 .388 6931.550
.92 43 40 .625 .458 .674 7172.647
.93 40 35 .391 .895 .686 7448.875
.94 34 30 .460 .814 .741 7772.882
.95 26 25 .838 .571 .834 8164.451
.96 19 20 .818 .215 .452 8644.734
.97 12 15 .415 .439 .532 9269.095
.98 10 10 1 .520 .813 10,147.308

Benchmark model
.91 73 45 0 .104 0 6359.749
.92 69 40 0 .174 0 6510.675
.93 62 35 0 .162 0 6678.511
.94 55 30 0 .072 0 6869.484
.95 45 25 0 .290 0 7094.033
.96 35 20 .002 .706 .007 7359.968
.97 29 15 .001 .796 .005 7700.567
.98 22 10 .001 .974 .004 8161.252

Notes: Obs. represents the observed violations, and Exp. represents the expected violations. The α of Varα(t) level varies
from 0.91 to 0.98, and Var represents the average VaR values.

benchmark models can pass the test at the .05 level. Furthermore, we observe that the
benchmark model always underestimates the VaRs of total losses as the observed number
of violations are always larger than the expected ones. This can also be observed from the
average VaRs because the VaRs based on the proposed vine model are always greater than
the VaRs based on the independence model. This phenomenon can be explained by the
fact that the positive dependence between the losses leads to a larger VaR. We conclude
that the out-of-sample performance of proposed vine model is much better than that of
the benchmark model.

Table 2 reports the prediction results for the attGC and attTC datasets, respectively, where
the dependence structures of Gaussian copula and t copula are misspecified as the vine
copula.

• Gaussian copula. From Table 2, we observe that for the multivariate Gaussian depen-
dence, the prediction performance of misspecified vine copula model is very satis-
factory. The observed number of violations are very close to the expected ones at all
α’s levels. In particular, the p-values of all three tests are larger than .05. Therefore,
we conclude that the proposed approach works well for the attack processes with the
multivariate Gaussian copula dependence.

• t copula. From Table 2, we observe that for multivariate t dependence, the overall pre-
diction performance ofmisspecified vine copulamodel is also satisfactory. The p-values
of all three tests are larger than .05 for all α’s levels except that the p-value of LRind test is
.034 at α = .97. The observed number of violations are fairly close to the expected ones
at all α levels. When compared to the Gaussian case, the observed number of violations
is less accurate overall. Themisspecification seems to slightly overestimate the total loss.

We conclude, based on the simulation study, that the proposed vine model can effec-
tively predict the total cyber loss, and that the model still has a satisfactory prediction
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Table 2. Assessing prediction performance of the proposed approach based on the simulated out-of-
sample data when the real dependence structures are multivariate Gaussian and t copulas.

α Obs. Exp. LRuc LRind LRcc VaR

Vine model for multivariate Gaussian copula
.91 43 45 .753 .667 .868 5965.124
.92 38 40 .740 .536 .781 6214.522
.93 34 35 .860 .289 .561 6504.463
.94 30 30 1 .480 .779 6839.169
.95 25 25 1 .100 .258 7237.705
.96 18 20 .643 .241 .452 7751.667
.97 13 15 .592 .401 .609 8409.049
.98 10 10 1 .520 .813 9349.560

Vine model for multivariate t copula
.91 39 45 .339 .552 .530 6757.069
.92 33 40 .235 .211 .226 7044.525
.93 27 35 .145 .214 .160 7388.984
.94 26 30 .441 .175 .297 7798.743
.95 22 25 .530 .067 .153 8305.730
.96 18 20 .643 .144 .308 8956.474
.97 13 15 .592 .034 .092 9866.702
.98 8 10 .508 .102 .211 11,254.689

Notes: Obs. represents the observed violations, and Exp. represents the expected violations. The α of Varα(t) level varies
from 0.91 to 0.98, and Var represents the average VaR values.

performance when the dependence structure is misspecified as the vine structure when
the true dependence structure is multivariate Gaussian or t copula.

4. Empirical study

In this section, we present an empirical study on a cyber attack dataset.

4.1. Data description

The dataset was collected by a low-interaction honeypot [42], which has 69 consecutive
IP addresses. The dataset is the same as the one analyzed in [50], but the present analysis
is at a much higher resolution (i.e. at the computer level, meaning there are 69 servers,
while the main analysis in [50] is at the network level, meaning that the 69 servers are
treated as a whole). The dataset was collected during 4 November 2010 to 21 December
2010 with a total number of 1123 hours. As described in [50], each TCP flow initiated by a
remote computer is treated as an attack because the honeypot offers no legitimate service.
An unsuccessful TCP handshake is also deemed as an attack because a handshake can be
dropped by a honeypot program [3,50].

Since we have a 69-dimensional time series of cyber attack data, we randomly select four
of them and plot them in Figure 3.We observe that there exist clusters and extreme attacks
in the time series. Furthermore, we observe that there are some time intervals (say the 200th
and 400th) during which the numbers of attacks are large for most of the time series. This
indicates that there may exist positive dependence among cyber attacks. The experience in
studyingmultivariate time series datasets that exhibit high clusters of volatilities suggests us
to use copula-GARCHmodels to fit the data. Indeed, a preliminary analysis of the residuals
obtained after removing the means shows that a GARCHmodel is preferred for describing
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Figure 3. Randomly selected four servers under cyber attacks, where the y-axis represents the number
of attacks per hour, and the x-axis represents the time (unit: hour).

the volatilities. Please refer to [4,28,37,39,48] and the references therein for an overview
and recent developments in the field of multivariate time series analysis.

Since the multivariate cyber attack dataset is 69-dimension with size 1123, we divide it
into an in-sample part of 900 samples for modeling and an out-of-sample part of the rest
223 samples for out-of-sample evaluation.

4.2. Model fitting

We follow the approach described in Section 3.1 to perform the modeling process. Our
preliminary analysis on the residuals shows that GARCH(1,1) is sufficient to capture the
volatilities in the residuals. Therefore, we fix the GARCH part as GARCH(1,1). For the
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Table 3. The first level tree with their pair copulas and AICs, where the numbers represent the copula
families: 2-Student-t, 7-BB1, 9-BB7 and 10-BB8.

Block AIC Family Block AIC Family Block AIC Family

(12, 11) −1674.44 2 (10, 11) −1747.85 2 (23, 21) −1684.66 7
(33, 37) −2040.26 2 (37, 38) −2152.34 2 (40, 38) −2092.25 2
(9, 10) −1937.52 2 (15, 19) −1884.72 2 (21, 22) −2020.69 2
(5, 4) −1698.69 2 (6, 11) −1532.73 2 (16, 28) −1987 2
(4, 11) −1584.98 2 (11, 16) −1383.74 2 (44, 43) −2249.2 2
(39, 38) −2376.07 2 (17, 28) −2046.29 2 (36, 35) −2015.44 2
(3, 6) −1568.24 2 (18, 19) −1847.08 2 (49, 43) −2123.29 2
(8, 11) −1628.1 2 (51, 49) −1978.98 2 (45, 43) −1957.02 2
(65, 68) −136.726 10 (50, 46) −2207.87 2 (47, 43) −2353.93 2
(35, 27) −1977.83 2 (38, 22) −2031.49 2 (22, 25) −2117.04 2
(67, 66) −399.532 2 (46, 43) −2436.25 2 (42, 41) −2250.56 2
(69, 68) −526.255 2 (19, 16) −2036.85 2 (48, 38) −1915.24 2
(66, 68) −335.894 2 (20, 17) −1924.63 2 (41, 43) −2257.07 2
(24, 26) −2046.92 2 (26, 25) −2202.01 2 (25, 27) −2237.87 2
(68, 17) −441.061 2 (14, 25) −1536.61 2 (2, 27) −293.85 2
(7, 6) −1627.53 2 (13, 24) −1611.19 2 (43, 40) −2186.43 2
(54, 60) −146.787 9 (60, 55) −159.447 9 (57, 64) −114.864 9
(55, 53) −114.295 9 (64, 53) −120.098 9 (34, 32) −2111.71 2
(53, 61) −120.763 2 (1, 63) −36.601 2 (61, 63) −122.612 9
(27, 28) −2304.89 2 (31, 34) −2113.72 2 (30, 32) −1563.83 7
(32, 28) −1991.96 2 (29, 28) −2063.75 2 (28, 1) −496.522 2
(62, 54) −89.081 2 (56, 52) −129.643 2 (52, 54) −131.083 9
(58, 61) −129.832 2 (59, 53) −115.419 2

mean part, we allow the mean of the time series to vary in the form of autoregressive
and moving average processes. We find that AR(1)+GARCH(1,1) model with skewed
Student-t innovation is sufficient for modeling all the marginal time series by using the
same criterions described in the simulation study. Furthermore, the Ljung–Box tests on
the residuals of marginal time series pass the significant level at 0.05 for all the time series.
Therefore, for the marginal time series, the AR(1)+GARCH(1,1) model with skewed
Student-t innovation is sufficient to remove the dependence among the marginal time
series.

Next, we discuss how tomodel the dependence between the time series via vine copulas.
We use the Algorithm 1 described in [7] to select the truncated vine copulas based on
the Vuong test with a significant level 0.05 [47]. The candidate bivariate copulas include
Gaussian, Student-t , Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 and their rotated
copulas of 90, 180 and 270 degrees.

For the cyber attack dataset, the truncated level is determined as K=26, and we use the
M matrix to store all the information of vine structure. Table 3 shows the first level tree
blocks, pair copulas, and pair AICs. For the first level, we observe that the Student-t copula
is preferred by most blocks (around 85%), and the second preferred one is BB7 (around
10%). Thismight be because both copulas are flexible to capture the tail dependence, which
is exhibited by the cyber attack data in the form of simultaneous extreme cyber attacks.

In order to further illustrate the selected dependence structure, Figure 4 plots a part
of the copula blocks selected at level 1, and the pair AIC values are on the edges. For the
pair copulas selected on the other levels, we observe that the Student-t copula is still the
most preferred structure (454 times, 19.35%), the second preferred is the Frank copula (285
times, 12.15%), and the third one is the Gaussian copula (91 times, 3.88%).
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Figure 4. Part of the R vine structure at level 1: pairs (57, 64), (53, 64), (53, 61), (61, 63), (1, 63), (53, 59),
(53, 55), (55, 60) and (54, 60) with pair AIC values on their edges.

4.3. Out-of-sample performance

The out-of-sample performance of the proposed model is evaluated based on two metrics:
(i) the number of VaR violations (see Algorithm 2); and (ii) the predicted multivariate
density [14,22].

Number of VaR violations.As discussed in Section 3, we use Algorithm 2 to evaluate the
out-of-sample performance of the proposed dependence model.

Table 4 reports the testing results of the proposedmodel based on LRuc, LRind and LRcc.
For comparison purposes, we also present the testing results based on the benchmark
model (i.e. the independence model). We observe that the proposed vine copula model
passes all the tests for α levels between .95 and .97, and that the tests based on the bench-
markmodel fail at all levels. In particular, we observe that ignoring the dependence among
multivariate attacks underestimates theVaR’s in terms of the number of both violations and
average VaRs. This observation resonates the conclusion drawn in Section 3.

We conclude that the dependence between cyber attacks cannot be ignored. The con-
sequence of ignoring the dependence would significantly underestimate cyber risks. We
further compare the prediction performance of the proposed vine model to that of two
other widely used models: the Gaussian and t copula models. For the Gaussian and t cop-
ula models, unstructured covariances are implemented because they are flexible enough
to accommodate various kinds of dependence. Table 4 shows that the estimated VaR’s are
larger than the that of benchmarkmodel. This further indicates that the dependence should
not be ignored formultivariate attack processes. The prediction performances ofmultivari-
ate Gaussian and t models are comparable to that of the proposed vine model in terms of
the VaR violations at levels α = .96, .97. At level α = .95, the prediction performance of
proposed vine model is, in terms of the number of violations, slightly better than that of
multivariate Gaussian and t models.
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Algorithm 2 Algorithm for rolling prediction of VaRα ’s of total number of attacks
Input: Multivariate historical time series dataset
{(i, xi,t , s(t))|i = 1, . . . , 69; t = 1, . . . , 1123}; in-sample dataset
{(i, xi,t)|i = 1, . . . , 69; t = 1, . . . , 900}; out-of-sample dataset
{(i, xi,t)|i = 1, . . . , 69; t = 901, . . . , 1123}; α levels;
1: for t = 901, . . . , 1123 do
2: Based on the estimated AR(1)+GARCH(1,1) model, predict the next mean μ̂i and

standard error σ̂i,t , i = 1, . . . , 69
3: Based on the estimated Vine copula, simulate 5000 69-dimensional copula samples

u(k)
i,t , i = 1, . . . , n by using the algorithm in 1, k = 1, . . . , 5000

4: Convert the simulated dependent samples, namely the u(k)
i,t ’s, into the z

(k)
i,t ’s by

using the inverse of the estimated Student-t distribution, k = 1, . . . , 5000
5: Compute the predicted 5000 69-dimensional time series attack data x(k)

i,t by using
Equation (A5), k = 1, . . . , 5000

6: Calculate the simulated total number of attacks T(k)
t = ∑69

i=1 x
(k)
i,t , k = 1, . . . , 5000

7: return VaRα(t) based on predicted 5000 T(k)
t ’s

8: if The observed total number of attacks
∑69

i=1 xi,t > VaRα(t) then
9: An violation occurs;
10: return 1
11: else
12: return 0
13: end if
14: end for
Output: VaRα(t)’s of the total number of attacks, and the number of violations.

Prediction accuracy of multivariate density. In order to further evaluate the prediction
performance of the proposedmodel, we study the prediction accuracy of multivariate den-
sity of the proposedmodel.We adapt the framework presented in [22], which assumes that
any unknown model parameters are estimated on the basis of a moving window of fixed
size. We use the Kullback–Leibler information criterion (KLIC) to evaluate the prediction
performance, as described in [14]. The KLIC measures the divergence between the true
probability density and a candidate density. Specifically, the KLIC of the one-step-ahead
predicted density f̂t for Zt+1 = (Z1,t+1, . . . ,Z69,t+1) is given by

KLIC(f̂t) = Et[log pt(Zt+1) − log f̂t(Zt+1)],

where pt is the true, but unknown, conditional density of Yt+1. A KLIC value is nonneg-
ative, and the KLIC value equals zero only when f̂t equals the true conditional density pt .
Moreover, the smaller the KLIC value, the closer the predicted density to the true condi-
tional density. In practice, pt is unknown, and hence the KLIC score Kt+1 = log f̂t(Zt+1)

may be used. A larger Et[St+1] means the predicted density is closer to the true conditional



JOURNAL OF APPLIED STATISTICS 17

Table 4. Assessing prediction performance based on the out-of-sample dataset, where Obs. represents
the observed violations, Exp. represents the expected violations, and Var represents the average VaR
values.

α Obs. Exp. LRuc LRind LRcc Var

Vine model
.95 14 11 .399 .893 .694 17,680.158
.96 13 9 .191 .773 .408 18,157.087
.97 9 7 .388 .344 .440 18,815.904

Benchmark model
.95 56 11 0 .642 0 15,052.927
.96 53 9 0 .883 0 15,203.785
.97 47 7 0 .371 0 15,399.267

Multivariate Gaussian model
.95 15 11 .260 .988 .530 17,721.939
.96 13 9 .191 .773 .408 18,136.764
.97 9 7 .388 .344 .440 18,694.954

Multivariate tmodel
.95 18 11 .052 .651 .137 17,578.619
.96 13 9 .191 .773 .408 18,047.065
.97 10 7 .225 .439 .356 18,688.262

density [15]. According to Equation (3), we have

Kt+1 = log ĉt(ut+1) −
69∑
j=1

log(σj,t+1) +
69∑
j=1

log(gj(uj,t+1)),

where ut+1 = (u1,t+1, . . . , u69,t+1) with ui,t = Fi((xi,t − μi,t)/σi,t) for i = 1, . . . , 69, and
ĉt(·) is the conditional copula density estimated from the historical data up to time t.

For two competing copulasA andB, the null hypothesis is that for each t, the twomodels
have equal prediction performance on average. Since the conditional marginals are identi-
cally specified under both density predictions, it is equivalent to testing the following null
hypothesis:

H0 : E(log ĉA,t(Ût+1)) = E(log ĉB,t(Ût+1))

for t = 1, 2, . . .. The formalKLIC score test is developed as follows. Suppose the parameters
of marginals and copulas are estimated via a moving window of fixed length l, andm is the
length of the testing data. Based on the observed score differences

dt+1 = log ĉA,t(Ût+1) − log ĉB,t(Ût+1),

where t = l, . . . , l + m − 1, the test statistic can be constructed as

Ql,m = √
m
d̄l,m
σ̂l,m

,

where d̄l,m = ∑l+m
t=l+1 dt is the sample mean of the KLIC score difference, and σ̂l,m is a

heteroscedasticity and autocovariance consistent (HAC) estimate of the asymptotic stan-
dard deviation of

√
md̄l,m. We use the standard HAC estimation, namely σ̂ 2

l,m = γ̂0 +
2
∑K−1

k=1 akγ̂k where γ̂k represents the lag-k sample covariance of sequence dt for t = l +
1, . . . , t + m, and the ak’s are the Barlett weights, namely ak = 1 − k/K with K = �p1/4�.
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Table 5. Ql,m test statistics by comparing the means of the proposed vine copula model and that of the
other copulas, where l= 600 andm= 223.

Benchmark model Multivariate Gaussian model Multivariate tmodel

Ql,m 26.812 3.734 16.923
	(Ql,m) 1 .9999 1

The positive sign of Ql,m indicates that copula A has a better prediction performance than
copula B. It is known [22] that Ql,m follows the asymptotically standard normal distribu-
tion, which can be used for testing the significance of the difference. Specifically, we use
the following criterion: if 0.05 ≤ 	(Ql,m) ≤ 0.95, two competing models A and B are not
significantly different; if 	(Ql,m) < 0.05, model B is preferred; If 	(Ql,m) > 0.95, model
A is preferred.

Similar to previous discussion, we compare the prediction performance of proposed
vine model to that of the benchmarkmodel, while consideringmultivariate Gaussian and t
copula models with the unstructured covariances. For the cyber attack dataset, we use the
length of fixed windows l=600 and m=223. Table 5 describes the comparison results. It
is clear that the proposed vine copula model has a better prediction performance than the
other models.

Based on the empirical study, we conclude that the dependence between multivariate
attack processes cannot be ignored. The consequence of ignoring the dependence is the
underestimation of the cybersecurity risk. The proposed vine model has a satisfactory
prediction performance, and is recommended for multivariate cyber attack data.

5. Conclusion and discussion

We have proposed a new statistical approach for modeling multivariate cybersecurity
risks. The proposed approach is centered on Copula-GARCH models, where multivari-
ate dependence is accommodated by vine copulas. We have used the proposed approach
to characterize multivariate cyber losses based on the triggering mechanism. Our results
show that multivariate dependence between cyber attacks has a significant effect on the
total loss. The implication is that assuming away the dependence between cybersecurity
attacks will cause a severe underestimation of the cybersecurity risk. The proposed model
canmodel and predict high-dimensional cybersecurity risks at a satisfactory level, and can
be adopted for practical use.

The current research can be extended in several directions. First, other kinds of cyber
attack data should be studied. The present research focuses on honeypot data, but other
kinds of cyber attack data may exhibit different dependence structures that worth investi-
gation. Second, we need to collect real cyber loss data for modeling purposes in practice.
The proposed approach should be evaluated against such data. Third, the present work
focuses on the static copula approach for modeling high-dimensional cybersecurity risks.
It would be interesting to study whether time-varying/dynamic copula models can further
improve the prediction accuracy. The time-varying feature can be imposed on the copula
function(s) or the dependence parameter(s). There are studies on the time-varying cop-
ula models [11,32,38,39]. Our preliminary analysis shows that the time-varying t copula
with DCC(1,1) [32] can offer a good balance between the flexibility and the parsimony.
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The prediction performance of the time-varying t copula is comparable to that of mul-
tivariate t copula with unstructured covariance in terms of the number of VaR violations.
Dynamic factor copula, GAS (generalized autoregressive score) [11,38], or dynamicD-vine
[2] models can be good candidate models for modeling high-dimensional cybersecurity
risks.
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Appendix. Simulation of multivariate cyber losses

In the following, we discuss the simulation of multivariate cyber losses under the triggering
mechanism. The experiments are set up as follows.

Consider an enterprise with n= 10 servers, meaning the following 10-dimensional cyber attack
processes

(X1,t , . . . ,X10,t),

where t = 1, . . . , 1, 500.We first generatemarginal cyber attack processes from the AR(1)+GARCH
(1,1) model. That is, the number of attacks Xi,t has the following form:

Xi,t = μi + φi(Xi,t−1 − μi) + εi,t , i = 1, . . . , 10, (A1)

and

εi,t = σi,tZi
with Zi being the innovations that are independently and identically distributed. For the standard
GARCH(1,1) model, we have

σ 2
i,t = wi + αiε

2
i,t−1 + βiσ

2
i,t−1,
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Table A1. Parameters of marginal models of n= 10 servers.

Attack process μ φ ω α β ξ ν

1 13.982 .852 29.214 .632 .367 1.229 2.921
2 3.326 .845 2.790 .469 .530 1.122 2.689
3 7.737 .866 12.324 .703 .296 1.259 2.792
4 4.725 .840 5.560 .470 .529 1.145 2.638
5 5.438 .849 7.145 .567 .432 1.191 2.788
6 6.679 .854 9.481 .614 .385 1.237 2.832
7 6.905 .881 8.450 .562 .437 1.176 2.783
8 5.019 .892 3.511 .477 .522 1.152 3.034
9 5.775 .897 5.263 .557 .442 1.186 2.978
10 4.229 .885 2.650 .448 .551 1.131 3.031

where σ 2
i,t is the conditional variance and wi is the intercept. The density function of Zi can be

explicitly written as (see [19])

gi(z;ϑ i) = 2
ξ + ξ−1 [tν(ξz)I(z < 0) + tνv(ξ−1z)I(z ≥ 0)], (A2)

where I(·) is the indicator function, ϑ i = (ξi, νi), ξi > 0 is the skewness parameter, and

tνi(z) = �((νi + 1)/2)√
νiπ�(νi/2)

[1 + z2/νi]−(νi+1)/2

with the shape parameter νi > 0. The parameters used to generate the attack processes are listed in
Table A1. These parameters are determined from the real attack data studied in Section 4.

After determining the parameters for each attack process, we generate the 10-dimensional attack
process data of 1500 time intervals.Note that these 10-dimensional attack processes are independent.

Now, we discuss how to incorporate dependence into the simulated attack processes.

(a) Vine copula. To generate the vine dependence, we use the following M matrix for the vine
model:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0
7 1 2 0 0 0 0 0 0 0
9 7 1 4 0 0 0 0 0 0
10 9 7 1 6 0 0 0 0 0
8 10 9 7 1 1 0 0 0 0
2 8 10 9 7 8 7 0 0 0
4 2 8 10 9 7 8 8 0 0
5 4 6 8 10 9 10 9 9 0
6 6 4 6 8 10 9 10 10 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A3)

where the elements in theMmatrix indicate the attack processes. The families for pair copulas
in the vine tree are listed as follows:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
9 2 0 0 0 0 0 0 0 0
5 2 23 0 0 0 0 0 0 0
2 19 4 14 0 0 0 0 0 0
2 2 2 9 5 0 0 0 0 0
2 2 2 2 5 2 0 0 0 0
2 2 2 2 20 5 20 0 0 0
2 2 2 2 2 5 2 2 0 0
2 2 2 2 2 2 2 2 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A4)
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where the numbers represent the families of pair copulas: 2-Student-t copula; 4-Gumbel cop-
ula; 5-Frank copula; 9-BB7 copula; 14-rotated Gumbel copula (180 degrees); 19-rotated BB7
copula (180 degrees); 20-rotated BB8 copula (180 degrees); 23-rotated Clayton copula (90
degrees). For more details on the copula families, please refer to [27]. Note that the param-
eters of vine structure M in Equation (A3) and H in Equation (A4) are in fact from the real
attack processes studied in Section 4.
After determining the vine structureM andH, we generate 10-dimensional multivariate ran-
dom samples u1,t , . . . , u10,t , t = 1, . . . , 1, 500 based on the vine structure. We now convert
the simulated dependent samples, namely the ui,t ’s, into the zi,t ’s by using the inverse of the
Student-t distribution described in Equation (A2) with estimated skew and shape parameters.
Now we have the multivariate dependent attack data

xi,t = μ̂i + σ̂i,tzi,t , (A5)

for i = 1, . . . , 10, and t = 1, . . . , 1, 500.
(b) Multivariate Gaussian copula. The density of Gaussian copula can be written as

c(u|R) = 1
|R|1/2 exp

⎧⎪⎪⎨⎪⎪⎩−1
2

⎛⎜⎝	−1(u1)
...

	−1(ud)

⎞⎟⎠
T

· (R−1 − I) ·

⎛⎜⎝	−1(u1)
...

	−1(ud)

⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

where u = (u1, . . . , ud), d= 10, andR is the correlationmatrix. For themultivariate Gaussian
copula, we assume a uniform correlation structure, that is,

R =

⎛⎜⎜⎜⎝
1 ρ . . . ρ

ρ 1 . . . ρ
...

...
...

...
ρ ρ . . . 1

⎞⎟⎟⎟⎠ (A6)

and ρ = .7. After determining the dependence structure, we use Equation (A5) to produce
the multivariate attack data with the multivariate Gaussian dependence.

(c) Multivariate t copula. The density of multivariate t copula can be written as:

c(u|R, ν) =

�(ν+d
2 )(�( ν

2 )
d)

⎛⎜⎜⎝1 + ν−1

⎛⎜⎝t−1
ν (u1)

...
t−1
ν (ud)

⎞⎟⎠
T

· R−1 ·

⎛⎜⎝t−1
ν (u1)

...
t−1
ν (ud)

⎞⎟⎠
⎞⎟⎟⎠

−(ν+d)/2

|R|1/2(�( ν+d
2 )d)�( ν

2 )
∏d

i=1(1 + (t−1
ν (ui))2

ν
)−(ν+1)/2

,

where u = (u1, . . . , ud), d= 10, t−1
ν is the quantile function of the student distribution with

shape parameter ν, andR is the correlationmatrix. Formultivariate t copula, we assume ν = 2
and the uniform correlation structure being Equation (A6) with ρ = 0.9. We generate the
multivariate attack data according to Equation (A5).
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