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Moving Target Defense (MTD) 

 MTD is believed to be “game changer.” 

 There are a bag of  MTD techniques. 

 A classification of  three classes (next slide) 
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Three Classes of  MTD 

 Network-based MTD Techniques 

 IP address and TCP port randomization etc. 

 Host-based MTD Techniques 

 Instruction-level: ISR 

 Code-level: code randomization 

 Memory-level: ASLR 

 Application-level: N-version programming etc 

 Instrument-based MTD Techniques 

 Dynamic honeypot 
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How to Characterize Power of  MTD? 

 There is no systematic quantitative understanding of  

the power of  MTD techniques individually, let alone 

collectively. 

 Consequence: Don’t know how to deploy them 

collectively and effectively or even optimally. 

 How to even define/formalize them exactly? 

 This paper: Using cyber epidemic dynamics as the 

“lens” (or “ruler”) to characterize power of  MTD. 

 First analytic approach 

 First-step within this approach 
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What Is This Paper Basically About? 

 Cyber system often stays in some insecure/undesired 

configuration/posture (will be precisely defined). 

 MTD often induces transient secure configurations, 

which however do not last permanently. 

 How can we exploit MTD-induced secure configurations 

to rescue/tolerate the insecure ones, by (e.g.) making the 

dynamics converge to the clean state? 
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What Is This Paper Basically About? 

One sentence summary: Suppose we know MTD-induced 

transient secure configurations, we can optimally 

orchestrate MTD to achieve some desired long-term goal.  
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 C1: insecure configuration (e.g., due to the introduction 

of  new attacks) 

 C2, C3, …: MTD-induced transient secure configurations 



Optimal in What Sense? 

 Maximizing the time during which the cyber system can 

afford to stay in insecure configuration C1, while still 

able to force the dynamics converge to the desired state. 

 Don’t care about the cost imposed by launching MTD 

 Minimizing the cost of  deploying MTD, while allowing the 

cyber system to stay in insecure configuration for a 

given amount of  time. 

 When cost matters 

7 



Roadmap 

 Cyber epidemics model accommodating MTD 

 Analysis: The case of  dynamic parameters (t), (t) 

 Analysis: The case of  dynamic structures G(t) 

 Related work 

 Conclusion and future research directions 
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A specific kind of  Cybersecurity Dynamics (see poster) 

Complex Network based abstraction: 

 Nodes abstract entities (e.g., computer) 

 Node state: green -- secure; red -- compromised 

 Edges abstract the attack-defense interaction structure 

(system description/representation) 

Three kinds of  outcomes of  evolution of  global security state 
 
Example Question: what are the governing/scaling laws? 

Cyber Epidemic Dynamics: Basics 
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(Expected) portion of  compromised nodes w.r.t. time 

 This is perhaps the most natural cybersecurity metric. 

 With information about the probability that the nodes are 

compromised at time t, we can make better decisions. 

E.g., can a mission be disrupted at time t (< mission 

lifetime) with probability at most p? 10 

Cyber Epidemic Dynamics: Basics 
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(Expected) portion of  compromised nodes w.r.t. time 

Ideal result under defender’s 

(optimal) manipulation via, for 

example, MTD 

0 

1 
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Alternate result under 

defender’s manipulation via, for 

example, MTD 
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Cyber Epidemic Dynamics: Basics 

Equilibria can be “dynamic” due to the introduction of  zero-day attacks. 



Cyber Epidemics Model: Basics 

 Using attack-defense structure to capture the (attacker, 

victim) relation: G=(V, E) 

 Using parameters to capture “atomic” attack and defense 

capabilities:  

 : the probability an infected node u  V successfully 

attacks a secure node v  V over (u,v)  E at time t 

 : the probability an infected node v becomes secure 

at time t 

12 



Cyber Epidemics Model: Basics 

 Using attack-defense structure to capture the (attacker, 

victim) relation: G(t)=(V(t), E(t)) 

 Using parameters to capture “atomic” attacker and 

defense capabilities: (t), (t) 

 Using epidemic threshold to describe the phase 

transition: sufficient condition under which the epidemic 

dynamics converges to equilibrium state — the clean 

state (i.e., spreading dies out) in this paper. 
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Cyber Epidemics Model with MTD 

Idea: MTD can induce dynamic attack-defense structures 

G(t)=(V(t), E(t)) and/or dynamic parameters (t) and (t) 

 Network-based MTD Techniques can induce dynamic 

attack-defense structures (e.g., dynamic IP addresses) 

 Host-based MTD Techniques can induce dynamic 

parameters (e.g., harder to penetrate into computers) 

 Instrument-based MTD Techniques can induce dynamic 

attack-defense structures (e.g., dynamic IP addresses) 

and dynamic parameters (e.g., detecting new attacks) 
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Problem Space: Assuming Fixed V 

15 Definition: Configuration = (G(t), (t), (t)) 

Static structure: G=(V, E) 

Static parameters: ,   

Static structure: G=(V, E) 

Dynamic parameters:  

   (t), (t) 

Dynamic structure: 

 G(t)=(V, E(t)) 

Static parameters: ,  

Dynamic structure: G(t)=(V, E(t)) 

Dynamic parameters: (t), (t)  

See full 

version of  

the paper 



A General Model 
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 Dynamic structure: G(t)=(V, E(t)), adjacency matrix 

A(t)=[Avu(t)] 

 Dynamic parameters: (t), (t) 

 iv(t): probability node v is infected at time t (i.e., state) 

 Assuming attacks are launched independently 

 See “a new approach to modeling and analyzing 

security …” for tackling adaptiveness/dependence 

 We have, for each v 



Threshold in the Simplest Case 
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Spreading dies 

out (clean state) 

The threshold 

(sufficient condition) 



Idea of  Tolerating Insecure Config. 
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 Definition: Insecure configuration C1=(G1, , ): because it 

violates convergence condition (1). 

 Suppose the system has to stay in configuration C1 

 Justification: introduction of  new attacks etc 

 The defender can exploit MTD to force the system into 

some transient secure configuration C2, C3, … 

 How to orchestrate MTD to make the dynamics converge 

to the desired equilibrium state? 
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Def: MTD-Power w/o Considering Cost 
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Given 

information 

To 

maximize 



Def: MTD-Power while Considering Cost 
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Roadmap 

 Cyber epidemics model accommodating MTD 

 Analysis: The case of  dynamic parameters (t), (t) 

 Analysis: The case of  dynamic structures G(t) 

 Related work 

 Conclusion and future research directions 
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A General Result 
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Max Tolerance of  Insecure Configuration 

without Considering MTD Cost 
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The optimal 

orchestration strategy 



Algorithm for Orchestrating MTD to 

Achieve the Max Tolerance    

(without considering cost) 
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Degree of  Tolerance vs. Parameters: 

the case of  not considering cost 
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Minimizing Cost w.r.t. Given Degree 

of  Tolerance 
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Min Cost: Dynamic Parameters 
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Algorithm for Orchestrating MTD to 

Achieve the Min Cost 
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Simplifications 
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 When the cost functions are convex or concave, 

things can be simplified 

 True for many practical scenarios 

 See paper for details 



Roadmap 

 Cyber epidemics model accommodating MTD 

 Analysis: The case of  dynamic parameters (t), (t) 

 Analysis: The case of  dynamic structures G(t) 

 Related work 

 Conclusion and future research directions 
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A General Result 

31 



Max Tolerance of  Insecure Configuration 

without Considering MTD Cost 
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The optimal 

orchestration strategy 



Algorithm for Orchestrating MTD to 

Achieve the Maximum Tolerance 

(without considering cost) 
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Degree of  Tolerance vs. Parameters: 

the case of  not considering cost 
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Minimizing Cost w.r.t. Given Degree 

of  Tolerance 
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Idea for finding min cost: 

Fortunately, the number of  

MTD-induced configurations 

is often small  



Finding Minimum Cost 
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Finding Minimum Cost 
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Algorithm for Orchestrating MTD to 

Achieve the Minimum Cost 
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Roadmap 

 Cyber epidemics model accommodating MTD 

 Analysis: The case of  dynamic parameters (t), (t) 

 Analysis: The case of  dynamic structures G(t) 

 Related work 

 Conclusion and future research directions 
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Related Work 

 Characterizing effectiveness of  MTD: two 

complementary perspectives (see paper for references): 

 Specific technique with localized view     vs.           

classes of  techniques with global view 

 Step closer to real system: state  configuration 

 Cyber Epidemic Dynamics: an active research area 

rooted in biological epidemic dynamics 

 But beyond it because of  unique technical barriers 
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Limitation of  the Study 

 Assume attack-defense structures and parameters (i.e., 

transient configurations) are given. 

 Eliminating it: An orthogonal thread of  Cybersecurity 

Dynamics (see poster) 

 Assume attacker cannot choose when to impose 

configuration C1. 

 Assume homogeneous parameters (v, u) =  and (v) = . 

Eliminate them or weaken them as much as possible 

 Where is the boundary between analytic model and 

simulation model? 
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Conclusion and Future Work 

 An approach: using cyber epidemic dynamics to 

characterize the power of  MTD.  

 Two measures of  MTD-power: Optimization 

 Constructive proofs that lead to algorithms for 

orchestrating MTD to achieve the maximum 

tolerance or minimum cost 

 Future work: Addressing the limitations 
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Enjoy exploring the unknown 

territory! 
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… 

(      secure node         compromised node) 

 Can be instantiated at multiple resolutions: nodes 

represent (for example) computer, component, etc. 

 Topology can be arbitrary in real-life: from complete 

graph to any structure 
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Cyber Epidemic Dynamics: Basics 



The Gap Need to Be Bridged to Practice 

We assume we know “transient” capabilities of  launching 

MTD (in terms of  manipulating the model parameters). 

 Justification: No single MTD defense (combination) 

would be “permanently” powerful to force the dynamics 

converge to desired state (e.g., due to zero-day attacks) 

 Many desired “transient” configurations can tolerate 

some undesired configurations, when making the 

dynamics converge to the desired equilibrium state 

Need to eliminate this assumption. 
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