
A Dataset Generator for Next Generation
System Call Host Intrusion Detection Systems

Marcus Pendleton and Shouhuai Xu
Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249 USA

Abstract—Over the years, system calls (syscalls) have become
an increasingly popular data source for host intrusion detection
systems (HIDS). This is partly due to their strong security se-
mantic implications. As syscalls conform to a program’s control-
flow graph, a deviation in a syscall sequence may imply a
deviation in a program’s control-flow graph. This is useful for
detecting the control-flow hijacking class of attacks. Additionally,
malware must utilize syscalls in order to provide any utility to
the attacker, with the exception of some denial-of-service attacks.
Because all syscalls are observable from the kernel, this makes
evasion difficult for attackers under syscall HIDS. Given their
suitability for HIDS, many approaches based on syscalls have
been proposed. However, the syscall datasets available are not
always the most suitable for these and emerging techniques in
analytics, as they may need additional structural or contextual
information about syscalls in their decision engine. Furthermore,
this flatness of previous datasets often pigeonholes solutions into
those which are limited by that data view. It is also burdensome
on the researcher to generate his own custom dataset. In this
work, we propose an extensible syscall dataset generator which
includes structural and limited contextual information regarding
syscalls, yet allows for researchers to easily add their own features
to more quickly develop and evaluate their systems. Our dataset
generator can aid researchers in widening the solution space for
syscall HIDS.

Index Terms—Dataset, Intrusion Detection, Linux, Operating
Systems, Security, System Calls.

I. INTRODUCTION

Important to research and development of system call

(syscall) HIDS are syscall datasets with which a proposed

system can be validated and compared with others. Prior avail-

ability of syscall datasets expedites development of syscall

HIDS, as time can be focused on the decision engine (DE)

rather than the development of yet another syscall dataset.

However, current datasets for syscall HIDS contain only flat

sequences or lack contextual information, the problems of

which will be elaborated in Section III. This pigeonholes

solutions into those which deal only with such sequences,

limiting the success that can be achieved with syscall HIDS.

Additionally, these datasets are derived from very simple

programs, many of which are single-threaded [9]. Therefore,

results against these datasets can be misleading, as the syscall

sequences contained within are not representative of the many

complex programs that are highly vulnerable to attacks and

of high interest to defenders (e.g., web browsers and web

servers).

In this work, we introduce a dataset generator that 1) pro-

vides structural and contextual information from an arbitrary

target program, 2) is extensible to include additional execution-

feature a researcher deems important for anomaly detection,

and 3) is public domain to encourage future development.

The overarching goal is to widen the solution space of syscall

HIDS and expedite their development. The rest of this paper

is organized as follows: Section II briefly describes the related

work, Section III underpins the fundamental limitations of

previous datasets, Section IV describes the basic ideas the

derived objectives for our generator, Section V discusses

implementation details, and Section VI concludes.

II. RELATED WORK

Three main datasets exist with which researchers have been

testing their syscall HIDS: The Knowledge Discovery and

Data Mining ’98 and ’99 datasets (KDD), The University of

New Mexico dataset (UNM), and the more recent Australian

Defence Force Academy Linux Dataset (ADFA-LD) [1] [2]

[4] [9]. In the following subsections, a characterization of each

dataset is given, highlighting their pros and cons.

A. The KDD Datasets

The KDD ’98 and ’99 datasets were used for The Interna-

tional Knowledge Discovery and Data Mining Tools Competi-

tion, held in conjunction with The International Conference on

Knowledge Discovery and Data Mining. They are composed

of Solaris BSM audit logs, which contain a plethora of

system-wide events in addition to syscalls for analysis. These

datasets represent the first systematic, valuable and innovative

resources for the early development of syscall HIDS. Forrest et

al introduced her seminal work in syscall anomaly detection in

[12] with evaluations against these datasets. Her contributions

continues to influence the use of syscalls as a means of

anomaly detection today.

Despite being among the first datasets with which syscall

HIDS were developed, they have been heavily criticized for

their use in evaluating more recent syscall HIDS. [16] [17] [11]

and [16] highlight that the 90s era systems under which the

data was collected hardly reflect the systems in use today and

critique the methodology used to generate the datasets. Finally,

little emphasis is placed on the structure of syscall sequences

and absolutely no CPU-context information about the syscalls

are contained within the logs. The problems associated with

these deficiencies will be elaborated in Section III.

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

978-1-5386-0595-0/17/$31.00 ©2017 IEEE 231

•StreamTrans

•ImageIO

•ProcessThread

•ImgDecoder
•ProcessHangMonitor

•GMPThread
•JS Watchdog

•Encodin~able

•ProxyR~olution

•Hang Monitor

•HTML5 Parser

•Socket Thread

•ImageBridgeChild

•Timer

•DOM Worker

•JS Helper •CubeOp~tion

•URL Classifier•mozStorage

•Cache Deleter
•SoftwareVsyncThread

•VideoCapture

•Cache I/O

•localStorage DB

•DNS Resolver •Link Monitor

•IndexedDB
•Storage I/O

•InotifyEventThread

•Speechd init
•Cache2 I/O

•DOMCacheThread

•Startup Cache

•Compositor

•IPDL Background
•Gecko IOThread

•(anon)

•Web Content

•MediaManager •mtransport

•MediaPD~oder

•Chrome_ChildThread

•SubtleCrypto

•MediaPl~back

•MediaStreamGrph

•VideoChild

•MediaTimer

•CamerasIPC

firefox plugin-container

ls grep•(anon) •(anon) grep

Fig. 1: Identified Thread Functions in Mozilla Firefox

B. The UNM Dataset

The UNM dataset was popularized by the groundbreaking

work of Forrest et al [12] [20]. It contains syscall sequences

generated in SunOS from the programs lpr, xlock, named,

login, ps, inetd, sendmail, and s-tide, which is a

syscall HIDS itself. The sequences are from both synthetic

and live sources.

The variety of programs from both synthetic and live

sources made this a good dataset for early work in syscall

HIDS. However, the programs are simple in comparison to

highly complex and dynamic programs (e.g., with dynamically

loadable modules) such as web servers and browsers. Good

results against this dataset could be misleading, as they may

fail dramatically against more complex and realistic datasets

[9]. Additionally, more elaborate DEs need more sequences

to converge, and the relatively few sequences split among

the various programs in the UNM datasets may be largely

insufficient for more capable machine learning algorithms.

Finally, the syscall sequences are also flat.

C. The ADFA-LD Dataset

The ADFA-LD dataset was designed to succeed the previous

two datasets, with an emphasis on machine-wide collection

of syscalls. Data was collected using the auditd program

under Linux. Aside from the data generation on a more modern

system, it contains a rich set of attacks ranging from password

cracking to web shells.

Unfortunately, ADFA-LD suffers from the flatness as pre-

vious datasets. With sequences such as 6, 6, 63, 6, 42, ... ,no

structure or context can be obtained from the syscalls. The

implications of this will be explained in the next section.

III. PROBLEM

A quick glance at previous datasets reveals a few problems.

These can be characterized by the structure, type and quantity

of the syscall sequences and the complexity of the target

programs they profile. The following sections elaborate on

these problems and highlight their implications on intrusion

detection.

A. Structure

The most limiting characteristic of previous datasets is the

structure of their syscall sequences. All sequences in these

datasets are flat: linear sequences with little to no thread

information. In the case of multi-threaded programs, which

arguably comprise the bulk of programs defenders want to

monitor, this poses a problem. In particular, the syscalls gener-

ated from the parent and various children threads of a program

are interleaved in a linear sequence without distinction. Figure

2a depicts a flat sequence of syscalls. As syscall sequence

recognition is essentially a language modeling problem [18],

this degrades the learned model as ”bad transitions” (circled in

Figure 2b) increase the set of acceptable languages considered

normal. This can be exploited by attackers as this gives

him more maneuverability in the set of malicious sequences

he can generate that may evade a DE in a mimicry attack

[19], illustrated in Figure 6. Shaded areas represent area for

maneuverability in a mimicry attack.

(a) Flat Syscall Sequence

(b) Bad Transitions (circles) and Dependence (arcs)

Fig. 2: Flat Syscall Stream and Associated Problems

1) Non-Determinism: In the event that two or more threads

execute syscalls simultaneously (e.g., in a multi-core system),

their order in a flat sequence is uncertain. Furthermore, as

thread execution is non-deterministic with respect to identical

program inputs, and depends on system load and scheduling

algorithms, so are the resulting flat syscall sequences. Figure

3 depicts this phenomenon, where a program P is executed

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

232

multiple times with the same input. This demands that HIDS

algorithms that use flat inputs accommodate this phenomenon,

with adjacent syscall events possibly resulting from different

threads in a non-deterministic fashion. These ”bad transitions”

represent deviations in a control-flow graph (CFG), thus al-

lowing derived syscall HIDS models to permit them. This is

one source of inaccuracy in existing syscall HIDS. In Figure

2b, this phenomenon is captured by circled adjacent syscalls,

where each syscall in a pair is generated by a different thread.

Popular subsequence database (DB) and hidden Markov model

(HMM) methods directly learn these bad transitions.

Fig. 3: Non-Determinism in Syscall Sequences

2) Dependence: Related to the problem of interleaved

syscalls is the challenge of learning dependence. In this

context, a dependence refers to the true, per-thread order

of syscalls. However, in flat sequences, this true order is

interjected with syscalls from all threads (parent and children).

The arcs in Figure 2b depict true dependence to highlight the

correct transitions a model must learn, and interjected threads

disrupt this order. A HIDS algorithm must learn to discover

these dependences in a flat sequence to more accurately model

the set of acceptable syscall streams a program may generate.
Subsequence DBs and HMMs (for the most part), cannot

capture these dependences. In special cases of HMMs, higher-

order models predicting states from the previous n states

can be modeled, but incurs an exponential growth in states

with respect to n. Currently, the best class of models for

learning dependence using flat streams is recurrent neural

networks, with Long Short-Term Memory (LSTM) networks

performing the best among them [14]. However, due to non-

determinism, these networks require many presentations of

equivalent sequences to discover dependences.

B. Type
Another restricting characteristic of previous datasets is that

the syscall sequences are purely numbers indicating which

kernel service is desired by the user space program. In other

words, the context of syscalls is omitted. Research such as [15]

shows that syscall arguments can also be used for intrusion

detection. A dataset that includes such context information

(e.g., register values and limited memory operands) in addition

to pure syscall numbers may lead to the development of more

accurate syscall HIDS.

C. Quantity

Previous datasets give a limited number of training se-

quences to build DEs. This is a strong a assumption on

the adequate number and length of sequences needed for

new techniques. As machine-learning approaches grow in

complexity, so does the quantity of training data they require.

This is especially true in the case of LSTM neural networks

[14]. Typically a large number of machine-learning parameters

is necessary to model a language, especially a potentially

complex syscall language of a program. Figure 5 shows how

a CFG can be converted into a syscall finite-state machine

(FSM) using modified Depth-First Search (DFS) [13], [18],

[21]. Consequently, the complexity of the FSM, and it cor-

responding regular language, is dependent on the CFG. The

number of parameters determines the amount of training data

to derive a sufficient model. As a result, more training data

than what is currently offered by current datasets may be

insufficient for new approaches.

D. Complexity of Targets

The aforementioned problems become exacerbated as the

complexity of a program increases. In this work, complexity

refers to the number of distinct syscalls and thread func-

tionalities in a program. Thread functionalities correspond

to distinct subgraphs in a whole-program CFG (super CFG)

which individual threads traverse. Previous datasets, with the

exception of ADFA-LD, profile simple, less complex programs

such as lpr. Syscall HIDS which report success with such

programs are misleading as they fail with complex, real-

world programs of interest to defenders due partly to the

previously discussed problems [9] [8] [10]. ADFA-LD falls

short in that, although it contains sequences generated by

complex programs, its sequences are flat and contain no

thread and context information. Finally, none of the previous

datasets address the fact that complex programs, or attacks,

may spawn processes which generate sequences outside of

the target. It is necessary to incorporate the sequences of

spawned processes to aid in verifying ’helper’ programs or de-

tecting malicious activity such as unauthorized shell execution.

Mozilla Firefox is an example of an ideal target for syscall

HIDS validation as it is highly complex with helper programs,

plugins (dynamically loadable code) and numerous distinct

syscalls [3]. Figure 1 illustrates the high degree of thread

functionality in Mozilla Firefox, with each set corresponding

to a ’helper’ program, and members in each set referring to

child thread functionalities. These thread functionalities were

identified using the comm attribute in the Linux data structure

struct task, which developers of Mozilla Firefox pre-

sumably set for debugging purposes, as this field is usually

the name of the executable. During the course of normal

execution, the main binary of Mozilla Firefox (firefox)

may spawn plugin-container, ls and grep. firefox
and plugin-container can execute up to 40 and 29 iden-

tifiable thread functionalities (excluding anonymous threads),

respectively, each of which generates and interjects syscalls

into a flat syscall stream non-deterministically. The overlap of

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

233

Fig. 4: Flat to Per-Thread Sequences for Modeling

(a) Annotated CFG (b) Derived Syscall FSM

Fig. 5: CFG to FSM (Regular Language) Conversion via

Modified DFS. Numbered Basic Blocks Contain Syscalls

firefox and plugin-container in this figure refers to

functionality that may be common to both, perhaps provided

by shared libraries.

IV. BASIC IDEAS

As mentioned earlier, the syscall HIDS can be reduced

to a language modeling problem. Therefore, a dataset gen-

erator focused on providing structured (filtered) per-thread

streams of syscalls to avoid the problems of flat, interleaved,

noisy sequences will help syscall HIDS learn languages more

representative of their respective programs. As such, this

improved view on syscall streams is the basis of this work.

The transformation of a flat sequence to a structured sequence

is illustrated in Figure 4. In the following subsections, we

elaborate on the implications of flat and structured syscall

streams on language modeling, and outline derived objectives

for a better dataset generator to aid in improved syscall HIDS

design and development.

A. Languages of Syscall Sequences

The problem of syscall HIDS can be viewed as a language

modeling problem [19]. That is, given a dataset S of program

sequences, or the control-flow specification M extracted from

source or binary (Figure 5), the derived language accepts a set

of sequences representative of normal program behavior. Given

a dataset S (or model M), a language L(S) (L(M)) is the

collection of sequences that a DE will recognize as acceptable.

With the aforementioned problems of using flat sequences in

TABLE I: Comparison of Dataset/Generator Features

UNM KDD ADFA-LD Ours
Synthetic Source yes no no yes

Live Source yes no no yes
Thread Info no no no yes
Context Info no no no yes
Timing Info no no no yes

Spawn Following no no no yes
Extensible no no no yes

of Programs 9 980 - -

model building, the language L can accept considerably more

sequences not representative of normal program behavior.

Refer to Figure 6 for an illustration of this. L(True) represents

the ideal language that a DE should detect; syscall sequences

only representative of those a multi-threaded program can

generate conforming to its CFG. L(Flat) represents the lan-

guage, based on the same program, in which syscalls from

multiple threads are interleaved. In this example, the model

accepts more sequences than it should, providing an attacker

more freedom to construct malicious sequences deemed as

acceptable by a DE. L(PerThread) represents a language

closer the L(True) which we expect to achieve by using per-

thread streams for model building and analysis, as will be

elaborated below. L(PerThread) will also have shortcomings

attributed to the selected HIDS algorithm, such as HMM’s

probabilistic nature, thus leaving room for future improvement

by utilizing other features such as syscall arguments, limited

memory operands, etc. This language is denoted in the figure

by L(PerThread+ Context).

B. Dataset Objectives

Given the problems of previous datasets, we set out to

design a generator to lift the restrictions they impose on

conceiving, developing and validating methods leveraging new

techniques in analytics. The main objectives of the generator

are listed below:

• Thread-Sensitivity: to allow the isolation of syscall pat-

terns per thread, resulting in more tailored models

• Context-Sensitivity: to disambiguate the multiple roles a

syscall may serve in a program (e.g., write for file or

socket)

• Unlimited Sequences: to remove assumptions on the

number of sequences needed to train, validate and test

a system.

• Complex Targets: to allow for more realistic evaluation

of a HIDS

• Extensibility: to allow researchers to provision additional

execution features to their HIDS.

• Public Domain: to encourage future expansion and

development of the dataset and collection system

(git@github.com:marcusp46/syscall-dataset-

generator.git)

Table I shows a comparison between qualities of previous

datasets versus those of datasets output from our generator.

In Section V, implementation details for the generic compo-

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

234

Fig. 6: Various Syscall Languages of a Program:

Flat, PerThread, PerThread+Context, and True

Fig. 7: Architecture of Client-Based Target Generator

nents and the configuration for profiling Mozilla Firefox are

discussed.

V. GENERATOR ARCHITECTURE

In this section, we document the implementation details

for the generator. It is important to note that the design

is generic and intended to be adaptable to any target. As

such, researchers can profile a number of programs to test

their approaches. Mozilla Firefox was chosen as the target

in this work mainly because of its very high complexity and

named threads, which can be used to validate anonymous

thread identification techniques. Techniques which are able to

discriminate between normal and anomalous sequences gen-

erated from such a program may prove to be more viable for

real-world deployment. Additionally, Mozilla Firefox is more

representative of programs which defenders want to monitor,

as browsers are frequently targeted as infection vectors for

malware. Therefore, synthetic and attack sequences from real

exploits can be generated. Figure 7 depicts an architectural

overview of the Mozilla Firefox syscall generator, comprised

of the syscall collector, a containerized target execution envi-

ronment, and dispatcher.

A. Syscall Collector

The syscall collector is the most important component of

the syscall dataset generator. It is responsible for collecting

per-thread syscall sequences along with contextual information

for each syscall executed. Additionally, it must be extensible

per the objectives established earlier in Section IV. Intel’s

Pin was used as the collection mechanism by which these

qualities are achieved [5]. Pin is a dynamic instrumentation

tool which rewrites application code on-the-fly to include user-

defined profiling and analysis routines and provides a rich API

for accessing rich execution information. Pin is also available

for Linux and Windows platforms, meaning that the generator

can be used to develop syscall HIDS for both systems. For

demonstration purposes, Ubuntu Linux is the host platform

for profiling Mozilla Firefox [7].

a) Spawn (execv) Following: As mentioned earlier, not

only is tracing the syscalls executed within a particular target

important, but also those of programs spawned by that target.

This allows for a more comprehensive analysis of a target’s

activity, as the target may use the services of other programs.

This capability of processes can just as easily be exploited to

invoke programs of interest to attackers. In the case of Mozilla

Firefox, additional instances of firefox, as well as instances

of plugin-container, grep and ls may be spawned

during the course of normal execution (Figure 1). As such, the

syscall collector follows spawns by tracking the execv class

of syscalls, which are responsible for programs executing other

programs. For each spawned program, syscalls are tracked in

the same manner as those from the parent process. Details of

the syscall collector’s output are explained in Section V-A0b.

b) Output: The output of the syscall collector can

include any user-defined execution feature appropriate for

a particular DE. However, the default output of our system

provides baseline output to yield the desired qualities

of syscall sequences previously discussed as well as flat

sequences for DE comparison purposes and a reduced fileset

size. Listing 1 describes fileset generated from an execution

trial of a target. execve refers to the base filename of

the main and spawned executable files, iteration refers

to the invocation instance of those executable files (zero-

based), and ID refers to the internal identification of threads

according to order of creation within a process (zero-based).

1) flat _<execv_name>_<iteration>.out
• flat program-view sequence to serve as input into legacy approaches and cor-

relation to context and scheduling info for per-thread sequence reconstruction

2) context_<execv_name>_<iteration>.out
• flat context info (register arguments) of each syscall corresponding to positions

in 1

3) schedule_<execv_name>_<iteration>.out
• identifier of thread contexts corresponding to positions in 1

4) timing_<execv_name>_<iteration>.out
• inter-arrival time of syscalls corresponding to positions in 1

5) thread_names_<execv_name>_<iteration>.out
• line-by-line listing of thread names indexed by ID string)

6) temporal_<ID>_graph_<execv_name>_<iteration>.out
• per-thread temporal graph data structure of syscall execution

7) thread_<ID>_<execv_name>_<iteration>.out
• per-thread streams of syscall sequences

8) summary.out
• statistics of syscall execution during trial

Lst. 1: Output Files of The Generator and Their Descriptions

It is important to note that the flat sequence is meant

not only for input into traditional syscall HIDS approaches,

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

235

but reduce the number of per-thread files output after an

execution trial. For example, per-thread inter-arrival times

can be reconstructed using the flat*, scheduling* and

timing* files.

B. Containerized Execution Environment

The containerized execution environment leverages features

of Docker, which offers some of the isolation benefits of

virtual machines (VM) in terms of segregating processes,

filesystems and network interfaces [6]. In contrast to VMs,

containers share the same kernel as the host but have a

significantly lower resource footprint (CPU, memory) and

much shorter provisioning time. Similar to VMs, containers

are provisioned from images, which are typically mutable and

changes are kept local to an instance, discarded upon container

termination. This allows for the target program to run in

a fresh environment in many instances simultaneously on a

host, increasing the throughput of execution trials for dataset

generation. Additionally, containers can be programmatically

managed for full automation.

C. Dispatcher

The dispatcher coordinates all activities of the generator.

For profiling Mozilla Firefox, it first receives input for URLs

to visit. The source of URLs is discussed in Section V-D. For

each URL, the dispatcher provisions a container to run Mozilla

Firefox under the syscall collector, storing the output files

locally on the container. At termination, the files are copied

from the container to the host under a unique identifier for the

visit event.

D. Benign and Attack Datasets

For syscall HIDS development, benign and attack syscall

sequences are necessary to train, validate and evaluate the

derived models. One approach is to use controlled environ-

ments with automated interactions with the target program

to generate synthetic data. The benefit of this approach is

that known-benign and known-malicious interactions can be

crafted. The limitation in this approach is that it is burdensome

to create interactions rich enough to discover as much thread

functionality as possible to reduce false-positives when tested

in real-world environments. In the context of Mozilla Firefox,

it incumbent on the developer to create test websites with

diverse content to explore as much of the code regions as

possible. The other approach is to direct the target to interact

in live environments. Although it is easier for the developer to

discover more thread functionality, ensuring whether a source

is benign or malicious is a challenge. The generator can be

used for both, however, we followed the lead in [22], where

Xu et al used the top 1K popular websites for benign sources.

Attack sequences were generated in a controlled environment.

VI. CONCLUSION

Syscalls have yet to realize their full potential in anomaly

detection. Research has focused on datasets which lack much

of the information about syscall events that can be utilized

to improve detection accuracy. Also, the development of new

datasets can be very time consuming.
This paper presents a dataset generator that gives researchers

and syscall HIDS an improved view of syscall sequences. It

will guide researchers in discovering novel ways to utilize

syscall sequences for HIDS and expedite their development.

Our solution’s rich dataset generation, extensibility and avail-

ability to the public under license should lead to more ex-

change of ideas.

Acknowledgement. This research was supported in part by

ARO Grant #W911NF-13-1-0141 and NSF Grant #1111925.

REFERENCES

[1] “Kdd98 intrusion detection dataset,” Online, 1998. [Online]. Available:
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/

[2] “Kdd99 intrusion detection dataset,” Online, 1998. [Online]. Available:
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/

[3] “Mozilla firefox,” https://www.mozilla.org/firefox/, 2002–2017.
[4] “University of new mexico intrusion detection dataset,” 2004. [Online].

Available: http://www.cs.unm.edu/ immsec/systemcalls.htm
[5] “Intel pin,” https://software.intel.com/sites/landingpage/pintool/, 2005–

2017.
[6] “Docker,” https://www.docker.com/, 2013–2017.
[7] “Ubuntu linux,” https://www.ubuntu.com/, 2014–2017.
[8] G. Creech, “Developing a high-accuracy cross platform host-based in-

trusion detection system capable of reliably detecting zero-day attacks,”
Ph.D. dissertation, PhD thesis, University of New South Wales, 2014.

[9] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to
retire the kdd collection,” in 2013 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2013, pp. 4487–4492.

[10] ——, “A semantic approach to host-based intrusion detection systems
using contiguousand discontiguous system call patterns,” IEEE Trans-
actions on Computers, vol. 63, no. 4, pp. 807–819, 2014.

[11] V. Engen, J. Vincent, and K. Phalp, “Exploring discrepancies in findings
obtained with the kdd cup’99 data set,” Intelligent Data Analysis, vol. 15,
no. 2, pp. 251–276, 2011.

[12] S. Forrest, “A sense of self for unix processes,” Security and Privacy,
1996.

[13] J. T. Giffin, S. Jha, and B. P. Miller, “Detecting manipulated remote call
streams.” in USENIX Security Symposium, 2002, pp. 61–79.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[15] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the detection of
anomalous system call arguments,” in European Symposium on Research
in Computer Security. Springer, 2003, pp. 326–343.

[16] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer,
2003, pp. 220–237.

[17] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory,” ACM Transactions on Information and System
Security (TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[18] D. Wagner and D. Dean, “Intrusion detection via static analysis,”
in Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. IEEE, 2001, pp. 156–168.

[19] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security. ACM, 2002, pp. 255–264.

[20] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” in Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on. IEEE, 1999, pp. 133–
145.

[21] K. Wee and B. Moon, “Automatic generation of finite state automata for
detecting intrusions using system call sequences,” in Computer Network
Security. Springer, 2003, pp. 206–216.

[22] L. Xu, Z. Zhan, S. Xu, and K. Ye, “Cross-layer detection of malicious
websites,” in Proceedings of the Third ACM Conference on Data and
Application Security and Privacy, ser. CODASPY ’13. New York, NY,
USA: ACM, 2013, pp. 141–152.

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

236

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

